On the Extension of the Elementary Theory of Probability for Psychological Phenomena

1

Abstract

Based on a review of the achievements of quantum mechanics and the psychology of perception, some of their possibilities for expanding the classical theory of probability to the field of representing psychological events, for which a combination of outcomes may have a probability greater than the probability of single events from their common set, are considered. It is noted that a model based on a common space of elementary non-intersecting elements is insufficient for describing the psychology of behavior associated with generative processes and co-represented phenomena. To extend elementary probability theory, results from quantum theory relating to ideas about test spaces and the possibility of combining individual events in a test can be used. The proposed models can include both systems of individual tests with repetition of events in additional tests and the possibility of combining individual test events themselves using combinatorial and geometric (projection) methods. Simple examples of expanding classical probabilistic models show that the "Conjunction Fallacy" in the psychology of heuristic behavior should be considered not so much an error of subjects as a scientific illusion of researchers, when they try to fit the behavior of a more complex system into the Procrustean bed of an overly simple model.

General Information

Keywords: probability, quantum representations, test spaces, co-representation, conjunction fallacy, scientific illusion

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2024140401

Received: 01.10.2024

Accepted:

For citation: Artemenkov S.L. On the Extension of the Elementary Theory of Probability for Psychological Phenomena. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 4, pp. 5–29. DOI: 10.17759/mda.2024140401. (In Russ., аbstr. in Engl.)

References

  1. Abramov V.E., Maslov O.N., Shatalov I.S., Yuklasov K.A. Leonard Jimmy Savage and His Subjective Probability Theory. Part 1. Scientific Background, Preconditions and Prospects. Informacionnye tekhnologii = Information Technologies. 2020. Vol. 18. no. 1., pp. 89-105. (In Russ., аbstr. in Engl.).
  2. Artemenkov S.L. The Aspects of Modelling and Specific Characteristics of Complex Systems. Modelirovanie i analiz dannykh = Modelling and Data Analysis, 2016, no. 1. pp. 47–59. doi:10.17759/mda.04. (In Russ., аbstr. in Engl.).
  3. Artemenkov S.L. Co-representation Model for Estimation of Joint Probability of Events. Modelirovanie i analiz dannykh = Modelling and Data Analysis, 2014, no. 1. pp. 43–54. (In Russ., аbstr. in Engl.).
  4. Artemenkov S.L. Ontological and Epistemological Aspects of Modeling: Modelling Relation and Adiaphoric Systems. Modelirovanie i analiz dannykh = Modelling and Data Analysis, 2022. Vol. 12, no. 4, pp. 5–24. DOI: https://doi.org/10.17759/mda.2022120401 (In Russ., а in Engl.).
  5. Atkinson R., SHifrin R. CHelovecheskaya pamyat': sistema pamyati i processy upravleniya // Psihologiya pamyati / Pod red. YU. B. Gippenrejter, V. YA. Romanova. 3-e izd. M.: Astrel', 2008. 387–407.
  6. Balashov L.E. Novaya metafizika. Kategorial'naya kartina mira ili osnovy kategorial'noj logiki / L. E. Balashov. : RGIU, 2003. 868 p.
  7. Bamberg P., Sternberg SH. Kurs matematiki dlya studentov-fizikov. Fazis. 2006. T. 1, T. 2. 1256 p.
  8. Vertgejmer M. Produktivnoe myshlenie. M.: Progress, 1987. 336 p.
  9. Gnedenko B.V. Kurs teorii veroyatnostej / Uchebnoe posobie dlya vysshego i srednego obrazovaniya gos. un-tov / B. V. Gnedenko. 5-e izd. stereotipnoe. M.: Nauka, 1969. 400 p.
  10. Goryajnov V.V. Lekcii po teorii veroyatnostej. M.: MFTI, 2019. 59 p.
  11. Neobhodimost'. Veroyatnost': sbornik statej. M.: Progress, 1967. 367 p.
  12. Kajberg G. Veroyatnost' i induktivnaya logika. M.: Progress, 1978. 374 p.
  13. Kahneman D., Slovik P., Tverski A. Prinyatie reshenij v neopredelennosti: Pravila i predubezhdeniya. Har'kov: Gumanitarnyj centr, 2005. 632 p.
  14. Kolmogorov A.N. Osnovnye ponyatiya teorii veroyatnosti. Moskva, Nauka, 1974, 120 p.
  15. Kuravsky L.S., Kozyrev A.D., Greshnikov I.I. Mathematical Model of the Pilot Associated Activities and Its Application for Objective Professional Training and Condition Assessment. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2024. Vol. 17, no. 1, pp. 161–180. DOI: 10.17759/exppsy.2024170111. (In Russ., аbstr. in Engl.)
  16. Kuravsky L.S., Yuryev G.A., Yuryeva N.E., Isakov S.S., Nesimova A.O., Nikolaev I.A. Adaptive Technology of Psychological Diagnostics Based on the Markovian and Quantum Representations of the Task Performing Process. Modelirovanie i analiz dannykh = Modelling and Data Analysis, 2022. Vol. 12, no. 4, pp. 36–55. DOI: https://doi.org/10.17759/mda.2022120403 (In Russ., а in Engl.).
  17. Landau L.D., Lifshic E.M. Kvantovaya mekhanika (nerelyativistskaya teoriya) // Teoreticheskaya fizika. M.; L.: OGIZ, 1948. T. 5. CH. 1. 570 p.
  18. Leonov H.H., Sachkov YU.V., Ruzavin G.I. Veroyatnost' / Gumanitarnyj portal: Koncepty [Elektronnyj resurs]. Centr gumanitarnyh tekhnologij, 2002–2023 (poslednyaya redakciya: 29.11.2023). URL: https://gtmarket.ru/concepts/7069
  19. Leontovich M.A. Statisticheskaya fizika. M.; L.: OGIZ, 1944. 256 p.
  20. Lotov V.I. Lekcii po teorii veroyatnostej / uchebnoe posobie dlya studentov mekhaniko-matematicheskogo fakul'teta NGU. Novosibirsk: NGU, 2019. 115 p.
  21. Lejng R.D. Raskolotoe «YA». M.: AST, 2021. 288 p.
  22. Maturana U. Biologiya poznaniya. V knige YAzyk i intellekt. Sb./Per. s ang. i nem. / Sost. i vstup. V.V. Petrova. M.: Progress, 1995. 95-142.
  23. Mizes R. Veroyatnost' i statistika: Per. s nem. / Pod red. i s predisl. A.YA. Hinchina. M.: Knizhnyj dom «LIBROKOM», 2009. 264 p.
  24. Mirakyan A.I. Kontury transcendental'noj psihologii (kniga 2). M.: Izd-vo «Institut psihologii RAN, 2004. 384 s.
  25. Pechenkin A.A. Ponyatie veroyatnosti v matematike i fizike (diskussii 1920–1930-h gg. v SSSR). Epistemologiya i filosofiya nauki. 2019. T. 56. № 3. pp. 202–218.
  26. Prohorov YU.V., Rozanov YU.A. Teoriya veroyatnostej. Osnovnye ponyatiya, predel'nye teoremy, sluchajnye processy, M.: Nauka, 1973. 494 p.
  27. Psihologiya vospriyatiya: transcendental'nyj vektor razvitiya. pod red. G. V. SHukovoj. M.; SPb.: Nestor-Istoriya, 2020. 284 p.
  28. Pyatnicyn B.N., Grigor'yan E.R. Obosnovanie i problema vybora teorii veroyatnostej. Filosofiya nauki. Vyp. 1. Problemy racional'nosti. M.: IF RAN, 1995. 302-318.
  29. Ruzavin G.I. Logicheskaya veroyatnost' i induktivnyj vyvod // Voprosy filosofii. 1967. № 4. pp. 102-110.
  30. Hinchin A.YA. CHastotnaya teoriya R. Mizesa i sovremennye idei teorii veroyatnosti // Voprosy filosofii. 1961. №. 1. pp. 91-102. №. 2. pp. 77-89.
  31. CHernova N.I. Teoriya veroyatnostej: Uchebnoe posobie / SibGUTI. Novosibirsk, 2009. 128 p.
  32. Artemenkov S.L. Сorepresentation of the features of objects in the processes of perception and assessment of the chances of joint events / 42nd European Conference on Visual Perception (ECVP) 2019 Leuven. Perception. 2019. 48(S2). P. 141. https://journals.sagepub.com/doi/full/10.1177/0301006619863862
  33. Artemenkov S.L. Kansei Versus Extensional Reasoning: The Scientific Illusion of the Conjunction Fallacy in Probability Judgments // Proceedings of the First International Workshop on Kansei. 2006. 8-11. Available at: https://www.psycho.hes.kyushu-u.ac.jp/~lab_miura/Kansei/Workshop/proceedings/Opening_talk.pdf
  34. Artemenkov S.L. Metaphysics and Fundamentals of Transcendental Psychology Approach. Open Journal of Philosophy, 2021. 11. 125-147. https://doi.org/10.4236/ojpp.2021.111010
  35. Artemenkov S.L. Prerequisites of Regulatory Scientific Models in Education and Social Practice: Transcendental Approach to Conjunction Fallacy. Advances in Social Science, Education and Humanities Research (ASSEHR), volume 315. Proceedings of the 2019 International Conference on Pedagogy, Communication and Sociology (ICPCS 2019). 313-317. https://doi.org/10.2991/icpcs-19.2019.69
  36. Artemenkov S.L. Scientific conceptions and heuristics in cross-cultural communication and education in terms of a joint probability decision making. Riga: ISMA. Information Technologies, Management and Society, 2013, Vol. 6, No. 1. P. 20–30.
  37. Birkhoff G. & von Neumann J. “The Logic of Quantum Mechanics”, Annals of Mathematics, 1936, 37(4): 823–843. doi:10.2307/1968621
  38. Blutner R. Complementarity and Quantum Cognition. In S. Satsangi, A.M. Horatschek, A. Srivastav (eds) Consciousness Studies in Sciences and Humanities. 2021. 27-45.
  39. Foulis D.J., & Randall C.H. Operational statistics. I. Basic concepts. Journal of Mathematical Physics. 1972, 13. 1667-1675.
  40. Foulis, D.J., & Randall, C.H. Manuals, Morphisms and Quantum Mechanics, in A. Marlow, ed., Mathematical Foundations of Quantum Theory, Academic Press, New York. 1978. 105–126.
  41. Galavotti M.C. Philosophical introduction to probabilities. Stanford, 2005.
  42. George Mackey (1916–2006), Notices of the American Mathematical Society. 2007. 54(7). 824-850.
  43. Gillies D. Philosophical theories of probability. L., 2000.
  44. Greechie R.J. Orthomodular lattices admitting no states, Journal of Combinatorial Theory, Series A. 1971. 10(2). 119-132. https://doi.org/10.1016/0097-3165(71)90015-X
  45. Hertwig R., & Gigerenzer G. The ‘conjunction fallacy' revisited: how intelligent inferences look like reasoning errors. Journal of Behavioral Decision Making, 1999. 12, 275-305.
  46. Heuristics & Biases: the psychology of intuitive judgement / edited by T. Gilovich, D. Griffin, D. Kahneman. Cambridge University Press. 2002. 857 p.
  47. James W. The Principles of Psychology. New York/London: Holt and Macmillan. 1890. V. 1.
  48. Kuravsky L.S. Modeling dynamical behavior of stochastic systems: spectral analysis of qubit representations vs the mutual markovian model likelihood estimations. Lobachevskii Journal of Mathematics. 2021. 42 (10). 2364-2376.
  49. Kuravsky L.S. Simplification of Solving Diagnostics Problems by Convolution of Applied Markovian Models into the Quantum Representations. Lobachevskii Journal of Mathematics. 2022. 43 (7). 1669–1682.
  50. Lüders G. Über die Zustandsänderung durch den Meßprozeß, Annalen der Physik. 1951. 8, 322–328; English translation by K.A. Kirkpatrick, at arXiv:quant-ph/0403007.
  51. Mackey G.W. “Quantum Mechanics and Hilbert Space”, The American Mathematical Monthly, 1957, 64(8): 45–57. doi:10.2307/2308516
  52. Mackey G.W. The Mathematical Foundations of Quantum Mechanics: A Lecture-note Volume, New York: W.A. Benjamin. 1963.
  53. Mellor D.H. Probability: A philosophical introduction. L., 2005.
  54. Pitowsky I. Quantum Mechanics as a Theory of Probability. In W. Demopoulos, I. Pitowsky (eds) Physical Theory and its Interpretation. The Western Ontario Series in Philosophy of Science, vol 72. Springer, Dordrecht. 2006. 213-240. https://doi.org/10.1007/1-4020-4876-9_10
  55. Pothos E., & Busemeyer J.R. Formalizing heuristics in decision-making: a quantum probability perspective. Frontiers in psychology, 2011. 2. 289. https://doi.org/10.3389/fpsyg.2011.00289
  56. Putnam H. 1968, “Is Logic Empirical?” in R. Cohen and M.P. Wartofski (eds), Boston Studies in the Philosophy of Science (Volume 5), Dordrecht: D. Reidel; reprinted as “The Logic of Quantum Mechanics” in Hilary Putnam, Mathematics, Matter and Method, Cambridge University Press, 1976, second edition 1979, pp. 174–197. doi:10.1017/CBO9780511625268.012
  57. Randall C.H., & Foulis D.J. Operational statistics. II. Manuals of operations and their logics. J. Math. Phys. 14 (1973), 1472-1480.
  58. Tversky A., Kahneman D. Extensional vs. intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 1983. 90(4). 293-3l5. https://doi.org/10.1037/0033-295X.90.4.293
  59. von Neumann J. 1932, Mathematische Grundlagen der Quantenmechanik, Berlin: Springer-Verlag; English translation: Mathematical Foundations of Quantum Mechanics, Princeton: Princeton University Press, 1955.
  60. Wilce A. Test Spaces. in K. Engesser, D. Gabbay and D. Lehman (eds), The Handbook of Quantum Structures: Quantum Logic, North Holland, 2009, pp. 443-549.
  61. Wilce A. Dynamical states and the conventionality of (non-) classicality. In M. Hemmo, O. Shenker (eds) Quantum, probability, logic. The work and influence of Itamar Pitowsky. Springer Cham. 2020. 585-627. https://doi.org/10.1007/978-3-030-34316-3
  62. Wright R. Generalized urn models. Foundations of Physics. 1990. 20. 881-903.

Information About the Authors

Sergei L. Artemenkov, PhD in Engineering, Professor, Head of the Department of Applied Informatics and Multimedia Technologies, Head of the Center of Information Technologies for Psychological Research of the Faculty of Information Technologies, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0002-1619-2209, e-mail: slart@inbox.ru

Metrics

Views

Total: 4
Previous month: 0
Current month: 4

Downloads

Total: 1
Previous month: 0
Current month: 1