Algebraic curves of lower order in the teaching of higher mathematics

3

Abstract

The article continues the cycle ([1] – [15]) of the authors' methodological developments. It discusses some problems related to ways to improve the culture of mathematical thinking of mathematics students. The main object of discussion is algebraic curves. The authors rely on the experience of working at the Faculty of Information Technology of MSUPE.

General Information

Keywords: higher education, methods of teaching mathematics, analytical geometry, mathematical analysis, variable, function, implicit function, inverse function, derivative, secant, tangent, polynomial, algebraic curve, second-order curves, families of curves, bundles, geometric transformations

Journal rubric: Method of Teaching

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150110

Received: 10.12.2024

Accepted:

For citation: Kulanin Y.D., Stepanov M.E. Algebraic curves of lower order in the teaching of higher mathematics. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2025. Vol. 15, no. 1, pp. 168–209. DOI: 10.17759/mda.2025150110. (In Russ., аbstr. in Engl.)

References

  1. KulaninD.,NurkaevaI.M.Ontwogeometricproblemson an extra-mumm.Mathematicsatschool.2019.No.4.pp.35-40.
  2. KulaninD.,NurkaevaI.M.Onceagainabout the Mavlo task.Mathematicsatschool.2020.No.2.pp.76-79.
  3. KulaninD.,StepanovM.E.,NurkaevaI.M.Propaedeutics of solving extreme problemsin a schoolmathematicscourse.Datamodelingandanalysis.2019.No.4.pp.127-144.
  4. KulaninD.,NguyenWuQuang,StepanovM.E.Tangibleobjectivitywithcomputersupport.Datamodelingandanalysis.Scientificjournal.2019.No.4.pp.145-156.
  5. KulaninD.,StepanovM.E.,NurkaevaI.M. The role of imaginativethinkinginscientificthinking.Datamodelingandanalysis.2020.Vol.10.No.2Pp.110-128.
  6. KulaninD.,StepanovM.E.,NurkaevaI.M.Onvariousapproachestosolvingextremeproblems.Datamodelingandanalysis.2020.Vol.11.No.1.pp.40-60.
  7. LunguN.,NorinV.P.,WrittenD.T.,ShevchenkoYu.A.,KulaninE.D.Collection of problemsinhighermathematicswithcontrolpapers.Moscow,2013.Volume2(8thedition).
  8. StepanovE.Somequestions of teachingmethods of higher education mathematics.Datamodelingandanalysis.2017.No.1.pp.54-94.
  9. KulaninD.,StepanovM.E.From the experience of workinginremotemodeLearningModelinganddataanalysis.2022.Vol. 12.No.3.pp.58-70.
  10. KulaninD.,StepanovM.E.Comprehensiveconsideration of mathematicalconceptsas a methodologicaltechnique.Datamodelingandanalysis.2022.vol. 12.No.4.Pp .67-84.
  11. KulaninD.,StepanovM.E.Onvisualization of solutions to someextremetasks.Datamodelingandanalysis.2022.vol. 12.No.4.pp.94-104.
  12. KulaninD.,StepanovM.E.,Panfilov A.D.,PotonyshevI.S. A systematicapproachto the method of typhlopedagogyon the exampleofmathematicalanalysis problems.Datamodelingandanalysis.2022.vol. 12.No.2.pp.34-82.
  13. KulaninD.,StepanovM.E.Computationalexperimentinteachinghighermathematicson the example of numbertheory.Datamodelingandanalysis.2024.Vol.14.No.1.pp.170-195.
  14. KulaninD.,StepanovM.E. The use of imagesinteachinghigher education mathematics.Datamodelingandanalysis.2024.vol.14.No.2.C.192-225.
  15. KulaninD.,StepanovM.E.Computationalexperimentinteachinghighermathematics.Combinatoricsanditsapplications.Modelingandanalysisdata.2024.vol.14.No.3.C.174-202.
  16. Savelov. A. Flat curves. Taxonomy, properties, and application. (Reference Guide). M., State Publishing House of Physics.-mat. literature. 1960.
  17. Chetvertukhin N. F. Projective geometry. M. Enlightenment. 1969.
  18. Encyclopedia of elementary Mathematics. The fourth book. Geometry. M., State Publishing House of Physics.-mat. literature. 1963.
  19. Stepanov. E. The image of a force field as a heuristic model in mathematics. Data modeling and analysis. Proceedings of the Faculty of Information and Digital Technologies of the Moscow State Pedagogical University. – Issue 3., 2007.
  20. Alexandrov. S. Course of analytical geometry and linear algebra. M., Scientific 1979.
  21. Berezkin. N. Course of theoretical Mechanics. M., Moscow University  Press. 1974.
  22. Delaunay, N. N., Raikov, D. A. Analytical geometry. Volume 1. M. – L., OGIZ. 1968.
  23. Muskhelishvili N. I. Course of analytical geometry. M. – L., OGIZ, 1947.

Information About the Authors

Yevgeny D. Kulanin, Candidate of Science (Physics and Matematics), Professor, Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0001-6093-7012, e-mail: lucas03@mail.ru

Mikhail E. Stepanov, Candidate of Science (Education), Associate Professor, Department of Applied Mathematics, Faculty of Information Technologies, Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-4803-8211, e-mail: mestepanov@yandex.ru

Metrics

 Web Views

Whole time: 22
Previous month: 0
Current month: 22

 PDF Downloads

Whole time: 3
Previous month: 0
Current month: 3

 Total

Whole time: 25
Previous month: 0
Current month: 25