Maximizing the average score in a timed test

4

Abstract

The article considers the problem of finding a test taker's strategy for passing a time-limited test. A certain number of points is awarded for each test task. The criterion is the average number of points scored for the test. The random factors taken into account in the model are the time it takes the test taker to solve each task and the correctness of his solution, modeled by a random variable with the Bernoulli distribution. The problem is formulated in terms of stochastic linear programming with probabilistic constraints and a quality criterion in the form of the mathematical expectation of the number of points scored for the test. The solution algorithm, results of a numerical experiment and their comparative analysis with the results of solving a similar problem with other quality criteria previously obtained by the authors are presented.

General Information

Keywords: time-limited test, stochastic linear programming, probabilistic constraint

Journal rubric: Mathematical Modelling

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150109

Received: 13.01.2025

Accepted:

For citation: Stepanov A.E. Maximizing the average score in a timed test. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2025. Vol. 15, no. 1, pp. 158–167. DOI: 10.17759/mda.2025150109. (In Russ., аbstr. in Engl.)

References

  1. Van der Linden W. J., Scrams D. J., Schnipke D. L., et al. Using Response-Time Constraints to Control for Differential Speededness in Computerized Adaptive Testing . Applied Psychological Measurement, Vol. 23, no. 3, pp. 195–210. DOI: 10.1177/01466219922031329.
  2. Rasch G. Probabilistic models for some intelligence and attainment tests. Chicago: The University of Chicago Press, 1980. 199 p.
  3. Dumin P.N. and Kuravsky L.S. Studying Testing Effectiveness Dynamics in Training Operators of Complex Technical Systems. International Journal of Advanced Research in Engineering and Technology (IJARET), 2020. Vol.11, no 5, pp. 133-140. DOI: 10.34218/IJARET.11.5.2020.0 15.
  4. Pominov D.A., Kuravsky L.S., Dumin P.N. and Yuryev G.A. Adaptive Trainer for Preparing Students for Mathematical Exams. International Journal of Advanced Research in Engineering and Technology (IJARET), 2020. Vol. 11, no. 11, pp. 260-268. DOI 10.34218/IJARET.11.11.2020.022.
  5. Kuravsky L. S., Margolis A. A., Marmalyuk P. A., Panfilova A. S., Yuryev G. A., Dumin P. N. A Probabilistic Model of Adaptive Training. Applied Mathematical Sciences, 2016. Vol. 10, no. 48, pp. 2369–2380. http://dx.doi.org/10.12988/ams.2016.65168.
  6. Bosov A.V., Martyushova Ya.G., Naumov A.V., Sapunova A.P. Baiesovskii podkhod k postroeniyu individual'noi traektorii pol'zovatelya v sisteme distantsionnogo obucheniya [Bayesian approach to constructing individual user trajectory in learning management system].  Informatika i ee primeneniya=Informatics and Applications, Vol 14, no. 3, pp. 86-93. (In Russ.). DOI: 10.14357/19922264200313.
  7. Bosov A.V., Mhitaryan G.A., Naumov A.V., Sapunova A.P. Ispol'zovanie gamma-raspredeleniya v zadache formirovaniya ogranichennogo po vremeni testa [Using the Gamma Distribution in the Problem of Forming a Time-Limited Test]. Informatika i ee primeneniya=Informatics and Applications, Vol. 13, no. 4, pp.12-18. (In Russ.). DOI: 10.14357/19922264190402.
  8. Naumov A.V., Mhitaryan G.A., Cherygova E.E. Stokhasticheskaya postanovka zadachi formirovaniya testa zadannogo urovnya slozhnosti s minimizatsiei kvantili vremeni vypolneniya [Stochastic formulation of the problem of forming a test of a given level of complexity with minimization of the quantile of execution time].Vestnik komp'yuternykh i informatsionnykh tekhnologii, 2019, no. 2, pp. 37–46.  (In Russ.). DOI: 10.14489/vkit.2019.02.pp.037-046.
  9. Shamsutdinova T.M. Formirovanie individual'noi obrazovatel'noi traektorii v adaptivnykh sistemakh upravleniya obucheniem [Formation of an individual educational trajectory in adaptive learning management systems]. Otkrytoe obrazovanie, 2021, no. 25(6), pp. 36-44.  (In Russ.). https://doi.org/10.21686/1818-4243-2021-6-36-44.
  10. Naumov A.V., Ustinov А. E., Stepanov А.Е. O zadache maksimizatsii veroyatnosti uspeshnogo prokhozhdeniya ogranichennogo po vremeni testa [On the problem of maximizing the probability of successfully passing a time-limited test]. Avtomatika i Telemekhanika=Automation and remote control, 2024, no. 1, pp. 97-108. (In Russ.). DOI: 10.31857/S0005231024010061.
  11. Martyushova Ya.G., Naumov A.V., Stepanov А.Е. Optimizatsiya prokhozhdeniya ogranichennogo po vremeni testa po kvantil'nomu kriteriyu [Optimization of passing a time-limited test using a quantile criterion]. Informatika i ee primeneniya=Informatics and Applications, Vol.18, no. 4, pp. 37-44. (In Russ.). DOI: 10.14357/19922264240406.
  12. Charnes A., Cooper W.W. Chance-Constrained Programming. Management Sci. 1959, no.5, pp. 73–79. http://dx.doi.org/10.1287/mnsc.6.1.73.
  13. Charnes A., Cooper W.W. Deterministic Equivalents for Optimizing and Satisficing under Chance-Constraints. Res. 1963, no. 11, pp. 18–39. DOI: 10.1287/opre.11.1.18.
  14. Kan Yu.S., Kibzun А.I Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami [Stochastic programming problems with probabilistic criteria] : FIZMATLIT, 2009. 372 p. (In Russ.). ISBN 978-5-9221-1148-5.
  15. Kibzun А.I., Naumov А.V., Norkin V.I. O svedenii zadachi kvantil'noi optimizatsii s diskretnym raspredeleniem k zadache smeshannogo tselochislennogo programmirovaniya [On the reduction of a discrete distribution quantile optimization problem to a mixed integer programming problem]. Avtomatika i Telemekhanika=Automation and remote control, 2013, no. 6. pp. 66–86. (In Russ.). DOI: https://doi.org/10.1134/S0005117913060064.
  16. Naumov A.V., Dzhimurat A.S., Inozemtsev A.O. Sistema distantsionnogo obucheniya matematicheskim distsiplinam CLASS.NET. [Distance learning system for mathematical disciplines CLASS.NET] Vestnik komp'yuternykh i informatsionnykh tekhnologii. 2014, no.10, pp. 36–44. DOI: 10.14489/vkit.2014.010.pp.036-044 (In Russ., abstr. In Engl.).

Information About the Authors

Alexey E. Stepanov, Ph. D. Program student, Department of Probability Theory and Computer Modeling, Moscow Aviation Institute (National Research University) (MAI), Moscow, Russian Federation, e-mail: stepanoffalsey@gmail.com

Metrics

 Web Views

Whole time: 21
Previous month: 0
Current month: 21

 PDF Downloads

Whole time: 4
Previous month: 0
Current month: 4

 Total

Whole time: 25
Previous month: 0
Current month: 25