Modelling and Data Analysis
2025. Vol. 15, no. 1, 51–80
doi:10.17759/mda.2025150104
ISSN: 2219-3758 / 2311-9454 (online)
On the conditions of limited sets of reachability and controllability for linear systems with discrete time and total first-order constraints on scalar control
Abstract
The article discusses linear systems with discrete time and summary constraints on first-order scalar control. For this class of systems, the reachable and null-controllable sets in a finite number of steps and their limit analogues are studied. The criterion for the boundedness of reachable and null-controllable limit sets in terms of matrices of the system is formulated and proved. In the case of their boundedness, the conditions under which the studied sets are polyhedra are determined. The structure of polyhedra is defined. Examples are presented, and numerical modeling of reachable and null-controllable sets of various systems is carried out.
General Information
Keywords: linear system, discrete time, summary constraints, reachable sets, controllable sets, controllability
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150104
Received: 09.01.2025
Accepted:
For citation: Ibragimov D.N., Samonov S.S. On the conditions of limited sets of reachability and controllability for linear systems with discrete time and total first-order constraints on scalar control. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2025. Vol. 15, no. 1, pp. 51–80. DOI: 10.17759/mda.2025150104. (In Russ., аbstr. in Engl.)
References
- Moiseev N.N. Elementy teorii optimal'nykh sistem [Elements of the theory of optimal systems]. Мoskva: Nauka=Moscow: The science., 1975. (In Russ).
- Boltyanskij V.G. Optimal’noe upravlenie diskretnymi sistemami [Optimal control of discrete systems]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Propoi A.I. Elementy teorii optimal'nykh diskretnykh protsessov [Elements of the theory of optimal discrete processes]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Agrachev A.A., Sachkov YU.L. Geometricheskaya teoriya upravleniya [Geometric control theory]. Мoskva: Nauka=Moscow: The science. 2005. (In Russ.).
- Yang H., Xia Y., Geng Q. Stabilization on Null Controllable Region / In: Analysis and Synthesis of Delta Operator Systems with Actuator Saturation. Studies in Systems, Decision and Control. 2019. V. 193. P. 39–65. DOI: 10.1007/978-981-13-3660-7_3.
- Amato F., Cosentino C., Tommasi G. D., Pironti A., Romano M. Input–Output Finite-Time Stabilization of Linear Time-Varying Discrete-Time Systems // IEEE Transactions on Automatic Control. 2022. V. 67. No. 9. P. 4438–4450. DOI: 10.1109/TAC.2022.3161374.
- Ibragimov D.N. On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator // Autom. Remote Control. 2019. V. 80. No. 3. P. 393–412. DOI: 10.1134/S0005117919030019.
- Ibragimov D.N., Novozhilin N.M., Portseva E.Yu. On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control // Autom. Remote Control. 2021. V. 82. No. 12. P. 2076–2096. DOI: 10.31857/S0005231021120047
- Bellman R. Dinamicheskoye programmirovaniye [Dynamic programming]. Мoskva: IIL=Moscow: IIL., 1960. (In Russ).
- Rokafellar R. Vypuklyy analiz [Convex Analysis] Мoskva: Mir=Moscow: Mir, 1973.
- Mordukhovich B.SH. Metody approksimatsiy v zadachakh optimizatsii i upravleniya [Approximation methods in optimization and control problems]. Мoskva: Nauka=Moscow: The science., 1988. (In Russ).
- Zykov I.V. Priblizhennoye vychisleniye mnozhestv dostizhimosti lineynykh upravlyayemykh sistem pri raznotipnykh ogranicheniyakh na upravleniye [Approximate calculation of reachability sets of linear control systems under different types of control constraints] // Izvestiya instituta matematiki i informatiki Udmurtskogo gosudarstvennogo universiteta. 2022. T. 60 S. 16–33. [Bulletin of the Institute of Mathematics and Informatics of the Udmurt State University, 2022, Vol. 60, P. 16-33] DOI: 10.35634/2226-3594-2022-60-02 (In Russ.)
- Zaytseva M.V., Tochilin P.A. Metody postroyeniya otsenok mnozhestv dostizhimosti v zadache modelirovaniya potokov lyudey [Methods for constructing estimates of reachability sets in the problem of modeling people flows] // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki 2023. T. 63. № 8. S. 1381–1394 [Journal of Computational Mathematics and Mathematical Physics 2023. Vol. 63. No. 8. P. 1381–1394]. DOI: 10.31857/S0044466923070190
- Kuntsevich V.M., Kurzhanski A.B. Attainability Domains for Linear and Some Classes of Nonlinear Discrete Systems and Their Control // J. Autom. Inform. Sci. 2010. V. 42. No. 1. P. 1–18. DOI: 10.1615/JAutomatInfScien.v42.i1.10.
- Berendakova A.V., Ibragimov D.N. About the Method for Constructing External Estimates of the Limit 0-Controllability Set for the Linear Discrete-Time System with Bounded Control // Autom. Remote Control. 2023. V. 84. No. 2. P. 97–120. DOI: 10.25728/arcRAS.2023.95.43.001.
- Ibragimov D.N., Osokin A.V., Sirotin A.N., Sypalo K.I. On the Properties of the Limit Control Sets for a Class of Unstable Linear Systems with Discrete Time and l_1-Restrictions // J. Comput. Syst. Sci. Int. 2022. Vol. 61. No. 4. P. 467–484. DOI: 10.1134/S1064230722040104.
- Ibragimov D.N., Sirotin A.N. On Some Properties of Sets of Bounded Controllability for Stationary Linear Discrete Systems with Total Control Constraints // Journal of Computer and Systems Sciences International. 2023. Vol. 62. No. 6. P. 727–756. DOI: 10.1134/S1064230723050088.
- Ibragimov D.N. On the External Estimation of Reachable and Null-Controllable Limit Sets for Linear Discrete-Time Systems with a Summary Constraint on the Scalar Control // Autom. Remote Control. 2024. Vol. 85. No. 4. P. 321–340. DOI: 10.1134/S0005117924040027.
- Sirotin A.N., Formal’skii A.M. Reachability and Controllability of Discrete-Time Systems under Control Actions Bounded in Magnitude and Norm // Autom. Remote Control. 2003. V. 64. No. 12. P. 1844–1857. DOI: 10.1023/B:AURC.0000008423.93495.be
- Colonius F., Cossich J.A.N., Santana A.J. Controllability properties and invariance pressure for linear discrete-time systems // J. Dynam. Different. Equat. 2022. Vol. 34. P. 5–22. DOI: 10.1007/s10884-021-09966-4.
- Darup M.S., Mönnigmann M. On general relations between null-controllable and controlled invariant sets for linear constrained systems // 53rd IEEE Conference on Decision and Control. Los Angeles. 2014. P. 6323–6328. DOI: 10.1109/CDC.2014.7040380.
- Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moskva: Nauka = Moscow: The science, 1981. (In Russ.)
- Horn R., Johnson C. Matrichnyy analiz [Matrix Analysis]. Мoskva: Mir = Moscow: Mir, 1989. (In Russ.)
Information About the Authors
Metrics
Web Views
Whole time: 17
Previous month: 0
Current month: 17
PDF Downloads
Whole time: 5
Previous month: 0
Current month: 5
Total
Whole time: 22
Previous month: 0
Current month: 22