Modelling and Data Analysis
2025. Vol. 15, no. 1, 110–132
doi:10.17759/mda.2025150106
ISSN: 2219-3758 / 2311-9454 (online)
A priori estimation of the minimal stabilization time for linear discrete-time systems with bounded control based on the apparatus of eigensets
Abstract
A linear system with discrete time and bounded control is considered. It is assumed that the system matrix is non-singular and diagonalizable, and the set of admissible control values is convex and compact. For a given system, the time-optimization problem is studied. In particular, it is required to construct a priori estimates of the optimal value of the minimal time as a function of the initial state and system parameters that do not require an exact construction of the class of null-controllable sets. To solve the problem, an apparatus of eigensets of a linear transformation is developed, and basic properties of non-trivial eigensets are formulated and proven. For the simplest case, when the set of admissible control values is a non-trivial eigenset of the system matrix, the response time function for a given initial state is constructed explicitly. For an arbitrary control system, a method is proposed for reducing to the simplest case by constructing internal and external approximations of a set of constraints on control values. Numerical calculations are presented demonstrating the efficiency and accuracy of the developed technique.
General Information
Keywords: linear system, discrete time, time-optimization problem, optimal control, a priori estimates of the optimal value of the objective function, eigenset
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150106
Received: 13.01.2025
For citation: Guseva S.R., Ibragimov D.N. A priori estimation of the minimal stabilization time for linear discrete-time systems with bounded control based on the apparatus of eigensets. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2025. Vol. 15, no. 1, pp. 110–132. DOI: 10.17759/mda.2025150106. (In Russ., аbstr. in Engl.)
References
- Bellman R. Dinamicheskoye programmirovaniye [Dynamic programming]. Мoskva: IIL=Moscow: IIL., 1960. (In Russ.).
- Boltyanskij V.G. Matematicheskie metody optimal'nogo upravleniya [Mathematical methods of optimal control]. Мoskva: Nauka=Moscow: The science. 1969. (In Russ.).
- Boltyanskij V.G. Optimal’noe upravlenie diskretnymi sistemami [Optimal control of discrete systems]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Evtushenko Yu.G. Metody resheniya ekstremal'nyh zadach i ih prilozheniya v sistemah optimizacii [Methods for solving extreme problems and their applications in optimization systems]. Мoskva: Nauka=Moscow: The science. 1982. (In Russ.).
- Ibragimov D.N., Sirotin A.N. On the Problem of Optimal Speed for the Discrete Linear System with Bounded Scalar Control on the Basis of 0-controllability Sets // Autom. Remote Control. 2015. V. 76. No. 9. P. 1517–1540. DOI: 10.1134/S0005117919030019
- Ibragimov D.N., Sirotin A.N. On the Problem of Operation Speed for the Class of Linear Infinite-Dimensional Discrete-Time Systems with Bounded Control // Autom. Remote Control. 2017. V. 78. No. 10. P. 1731–1756. DOI: 10.1134/S0005117917100010
- Ibragimov D.N. On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator // Autom. Remote Control. 2019. V. 80. No. 3. P. 393–412. DOI: 10.1134/S0005117919030019.
- Ibragimov D.N., Novozhilin N.M., Portseva E.Yu. On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control // Autom. Remote Control. 2021. V. 82. No. 12. P. 2076–2096. DOI: 10.31857/S0005231021120047
- Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moskva: Nauka = Moscow: The science, 1981. (In Russ.)
- Moiseev N.N. Elementy teorii optimal'nykh sistem [Elements of the theory of optimal systems]. Мoskva: Nauka=Moscow: The science., 1975. (In Russ.).
- Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mishchenko B.F. Matematicheskaya teoriya optimal'nyh processov [Mathematical theory of optimal processes]. Мoskva: Nauka=Moscow: The science., 1969. (In Russ.).
- Propoi A.I. Elementy teorii optimal'nykh diskretnykh protsessov [Elements of the theory of optimal discrete processes]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Rokafellar R. Vypuklyy analiz [Convex Analysis] Мoskva: Mir=Moscow: Mir, 1973.
- Sirotin A.N., Formal’skii A.M. Reachability and Controllability of Discrete-Time Systems under Control Actions Bounded in Magnitude and Norm // Autom. Remote Control. 2003. V. 64. No. 12. P. 1844–1857. DOI: 10.1023/B:AURC.0000008423.93495.be
- Holtzman J.M., Halkin H. Directional convexity and the maximum principle for discrete systems // J. SIAM Control. V. 4. No. 2. 1966. P. 263–275. DOI: 10.1137/0304023
- Johnson C.R. Eigenset Generalizations of the Eigenvalue Concept // Journal of research of the National Bureau of Standards. V. 82. No. 2. P. 1977. 133–136. DOI: 10.6028/jres.082.013
- Kurzhanskiy A., Varaiya P. Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems // IEEE Transactions on Automatic Control. 2007. V. 52. No.1. P. 26–38. DOI: 10.1109/TAC.2006.887900
- Lin X. Zhang W. A maximum principle for optimal control of discrete-time stochastic Systems with multiplicative noise // IEEE Trans. Automatic Control. V. 60. No. 4. 2015. P. 1121–1126. DOI: 10.1109/TAC.2014.2345243
- Murota K. Eigensets and power products of a bimatroid // Advances in Mathematics. V. 80. No. 1. 1990. P. 78–91. DOI: 10.1016/0001-8708(90)90015-F
- Wang G., Yu Z. A Pontryagin's maximum principle for non-zero sum differential games of BSDEs with applications // IEEE Trans. Autom. Control. V. 55. No. 7. 2010. P. 1742–1754.
- Weibel C. Minkowski sums of polytopes: combinatorics and computation. Suisse: EPFL, 2007.
- Wu Z. A general maximum principle for optimal control of forward-backward stochastic systems // Automatica. V. 49. No. 5. 2013. P. 1473—1480.
Information About the Authors
Metrics
Web Views
Whole time: 18
Previous month: 0
Current month: 18
PDF Downloads
Whole time: 6
Previous month: 0
Current month: 6
Total
Whole time: 24
Previous month: 0
Current month: 24