Modelling and Data Analysis
2023. Vol. 13, no. 2, 151–179
doi:10.17759/mda.2023130209
ISSN: 2219-3758 / 2311-9454 (online)
Superellipsoidal Approximations in the Speed-in-action Problem for a Two-dimensional Linear Discrete System with Bounded Control
Abstract
The paper considers a two-dimensional linear discrete system with bounded control. For the system, the problem of speed is solved, that is, the construction of a control process that transfers the system from the initial state to the origin in the minimum number of steps. If the set of acceptable control values has a superellipse structure, then the problem of calculating optimal control can be reduced to solving a system of algebraic equations. A superellipsoidal approximation method has been developed for sets of arbitrary structure. Examples are considered in the paper.
General Information
Keywords: linear control system, speed problem, 0-controllability sets, maximum principle, superellipse
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2023130209
Received: 25.04.2023
Accepted:
For citation: Ibragimov D.N., Podgornaya V.M. Superellipsoidal Approximations in the Speed-in-action Problem for a Two-dimensional Linear Discrete System with Bounded Control. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2023. Vol. 13, no. 2, pp. 151–179. DOI: 10.17759/mda.2023130209. (In Russ., аbstr. in Engl.)
References
- Kolmogorov A.N., Fomin S.V. Elementy teorii funkcij i funkcional'nogo analiza [Elements of the theory of functions and functional analysis]. Мoskva: Fizmatlit=Moscow: Physical education. 2012. (In Russ.).
- Ashmanov S.A., Timohov S.V. Teoriya optimizacii v zadachah i uprazhneniyah [Optimization theory in problems and exercises].Мoskva: Nauka=Moscow: The science. 1991. (In Russ.).
- Rokafellar R. Vypuklyj analiz [Convex analysis]. Мoskva: Mir=Moscow: Mir. 1973. (In Russ.).
- Ibragimov D.N., Sirotin A.N. On the Problem of Operation Speed for the Class of Linear Infinite-Dimensional Discrete-Time Systems with Bounded Control. Autom. Remote Control. 2017. Vol. 78. no. 10. pp. 1731–1756.
- Ibragimov D.N. On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator. Autom. Remote Control. 2019. Vol. 80. no. 3. pp. 393–412.
- Ibragimov D.N., Novozhilin N.M., Portseva E.Yu. On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control/ Autom. Remote Control. 2021. Vol. 82. no. 12. pp. 2076–2096.
- Ibragimov D.N. Optimal'naya po bystrodejstviyu korrekciya orbity sputnika [Optimal speed correction of the satellite orbit]. Elektronnyj zhurnal Trudy MAI= Electronic journal Works of MAI. 2017. no. 94. Available at: http://trudymai.ru/published.php
- Bellman R. Dinamicheskoe programmirovanie [Dynamic programming]. Moskva: Izdatel'stvo inostrannoj literatury=Moscow: Publishing House of Foreign Literature. 1960. (In Russ.).
- Kamenev G.K. CHislennoe issledovanie effektivnosti metodov poliedral'noj approksimacii vypuklyh tel [Numerical investigation of the effectiveness of polyhedral approximation methods for convex bodies]. Moskva: Vychislitel'nyj centr RAN=Moscow: Computing Center of the Russian Academy of Sciences. 2010. (In Russ.).
- Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mishchenko B.F. Matematicheskaya teoriya optimal'nyh processov [Mathematical theory of optimal processes]. Мoskva: Nauka=Moscow: The science. 1969. (In Russ.).
- Boltyanskij V.G. Optimal'noe upravlenie diskretnymi sistemami [Optimal control of discrete systems]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Propoj A.I. Elementy teorii optimal'nyh diskretnyh processov [Elements of the theory of optimal discrete processes]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
- Kurzhanskiy A., Varaiya P. Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems. IEEE Transactions on Automatic Control. 2007. Vol. 52, no.1. pp. 26–38. DOI: 10.1109/TAC.2006.887900
- Tobler W. R. Superquadrics and Angle-Preserving Transformations. IEEECGA. 1981. Vol. 1. no. 1. pp. 11–23.
- Tobler W.R. The Hyperelliptical and Other New Pseudo Cylindrical Equal Area Map Projections. Journal of Geophysical Research. 1973. Vol. 78. no. 11. pp. 1753–1759.
- Desoer C.A., Wing J. The Minimal Time Regulator Problem for Linear Sampled-Data Systems: General Theory. J. Franklin Inst. 1961. Vol. 272. no. 3. pp. 208–228.
- Lin W.-S. Time-Optimal Control Strategy for Saturating Linear Discrete Systems. Int. J. Control. 1986. Vol. 43. no. 5. pp. 1343–1351.
- Moroz A.I. Synthesis of Time-Optimal Control for Linear Discrete Objects of the Third Order. Autom. Remote Control. 1965. V. 25. no. 9. pp. 193–206.
- CHernous'ko F.L. Ocenivanie fazovogo sostoyaniya dinamicheskih sistem. Metod ellipsoidov [Estimation of the phase state of dynamical systems. Ellipsoid method]. Мoskva: Nauka=Moscow: The science. 1988. (In Russ.).
- Horn R., Dzhonson I. Matrichnyj analiz [Matrix analysis]. Мoskva: Mir=Moscow: Mir. 1989. (In Russ.).
- Ibragimov D.N., Berendakova A.V. Method of Constructing and Estimating Asymptotic Controllability Sets of Two-Dimensional Linear Discrete Systems with Limited Control. Trudy MAI. 2022, no. 126. DOI: 10.34759/trd-2022-126-17
Information About the Authors
Metrics
Views
Total: 140
Previous month: 10
Current month: 8
Downloads
Total: 44
Previous month: 3
Current month: 1