Секс или смартфон? – Анализ связи между проблемным использованием смартфона и сексуальной активностью на основе однородных и неоднородных идентификаторов и алгоритмов машинного обучения

95

Аннотация

Цель. Исследование взаимосвязи между проблемным использованием смартфонов (ПИС) и снижением сексуальной активности пользователей в офлайне.
Контекст и актуальность. Смартфоны как повсеместное технологическое достижение изменили общественный ландшафт, внедрившись в различные аспекты жизни людей и усугубив физическую и эмоциональную зависимость от них. Более 50% пользователей продолжают пользоваться смартфонами, несмотря на их негативное влияние на повседневную жизнь, что свидетельствует об эскалации ПИС. В данном исследовании изучается связь ПИС с сексуальной активностью в офлайне среди людей среднего возраста.
Дизайн исследования. Репрезентативная выборка 2023 года была проанализирована с использованием однородных (Two-NN) и неоднородных (HIDALGO) оценок размерности идентификации наряду с алгоритмами машинного обучения для изучения связи между ПИС и сексуальной активностью пользователей вне сети.
Участники. В исследовании использовались данные телефонного опроса, проведенного среди 1005 человек с учетом пола, образования, уровня дохода и типа поселения.
Методы (инструменты). Данные охватывают экономические, социально-демографические показатели и связанные с зависимостью аспекты использования смартфонов. Ключевая переменная оценивала предпочтения между использованием мобильного телефона и сексуальным контактом. Результаты. Почти половина участников отдала предпочтение использованию смартфона перед сексуальной активностью в офлайне. Анализ показал сложную связь между индивидуальными и социальными аспектами ПИС и сочетанием социально-экономических факторов, выявив два значимых раздела, существенно влияющих на сексуальную активность: ПИС на индивидуальном уровне и ПИС, обозначенный в рамках социальных отношений.
Выводы. Полученные нами результаты свидетельствуют о значительной корреляции между ПИС и снижением сексуальной активности в офлайне, при этом социально-экономические переменные также играют важную роль. Исследование подчеркивает необходимость дальнейшего изучения влияния ПИС на сексуальную активность в офлайне, отмечая важность как личностных, так и социально-психологических аспектов использования смартфона.

Общая информация

Ключевые слова: проблемное использование смартфонов, сексуальная активность, однородные и неоднородные идентификаторы, машинное обучение

Рубрика издания: Эмпирические исследования

Тип материала: научная статья

DOI: https://doi.org/10.17759/sps.2024150208

Получена: 31.01.2024

Принята в печать:

Для цитаты: Гоштоньи М. Секс или смартфон? – Анализ связи между проблемным использованием смартфона и сексуальной активностью на основе однородных и неоднородных идентификаторов и алгоритмов машинного обучения // Социальная психология и общество. 2024. Том 15. № 2. С. 117–139. DOI: 10.17759/sps.2024150208

Литература

  1. Ali N., Neagu D., Trundle P. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. SN Applied Sciences, 2019. Vol. 1, pp. 1–15.
  2. Aljomaa S.S., Qudah M.F.Al, Albursan I.S., Bakhiet S.F., Abduljabbar A.S. Smartphone addiction among university students in the light of some variables. Computers in Human Behavior, 2016. Vol. 61, pp. 155–164.
  3. Allegra M., Facco E., Denti F., Laio A., Mira A. Data Segmentation Based on the Local Intrinsic Dimension. Scientific Reports, 2020. Vol. 10, no. 1, pp. 32–49.
  4. Amerio A., Lugo A., Bosetti C., Fanucchi T., Gorini G., Pacifici R., Gallus S. Italians Do it… less. COVID-19 lockdown impact on sexual activity: Evidence from a large representative sample of Italian adults. Journal of Epidemiology, 2021. Vol. 31, no. 12, pp. 648–652.
  5. Ansuini A., Laio A., Macke J.H., Zoccolan D. Intrinsic Dimension of Data Representations in Deep Neural Networks. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019. pp. 6111–6122.
  6. Ayar D., Bektas M., Bektas I., Kudubes A.A., Ok Y.S., Altan S.S. et al. The effect of adolescents’ internet addiction on smartphone addiction. Journal of Addictions Nursing, 2017. 28, no. 4, pp. 210–214.
  7. Bae S.M. The relationship between the type of smartphone use and smartphone dependence of Korean adolescents: National survey study. Children and Youth Services Review, 2017. Vol. 81, no. 1, pp. 207–211.
  8. Barnes S.J., Pressey A.D., Scornavacca E. Mobile ubiquity: Understanding the relationship between cognitive absorption, smartphone addiction and social network services. Computers in Human Behavior, 2019. Vol. 90, pp. 246–258.
  9. Benotsch E.G., Snipes D.J., Martin A.M., Bull S.S. Sexting, substance use, and sexual risk behavior in young adults. Journal of Adolescent Health, 2012. Vol. 38, no. 1, pp. 8–12.
  10. Beutel M.E., Burghardt J., Tibubos A.N., Klein E.M., Schmutzer G., Brähler E. Declining sexual activity and desire in men: findings from representative German surveys, 2005 and 2016. Journal of Sexual Medicine, 2018. Vol. 15, no. 5, pp. 750–756. DOI:10.1016/j.jsxm.2018.03.010
  11. Billieux J. Problematic use of the mobile phone: A literature review and a pathways model. Current Psychiatry Reviews, 2012. Vol. 8, no. 4, pp. 299–307.
  12. Bodenmann G., Atkins D.C., Schär M., Poffet V. The association between daily stress and sexual activity. Journal of Family Psychology, Vol. 24, no. 3, pp. 271–279. DOI:10.1037/a0019365
  13. Boulesteix A.L., Janitza S., Kruppa J., König I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012. Vol. 2, no. 6, pp. 493–507.
  14. Brand M., Wegmann E., Stark R., Müller A., Wölfling K., Robbins T.W., Potenza M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 2019. Vol. 104, pp. 1–10.
  15. Breiman L. Classification and regression trees. London: Routledge, 2017. 368 p.
  16. Carmichael M.S., Humbert R., Dixen J., Palmisano G., Greenleaf W., Davidson J.M. Plasma oxytocin increases in the human sexual response. The Journal of Clinical Endocrinology & Metabolism, 1987. Vol. 64, no. 1, pp. 27–
  17. Chavent M., Kuentz V., Liquet B., Saracco L. ClustOfVar: An R package for the clustering of variables. arXiv preprint arXiv:1112.0295. London: Routledge, DOI:10.48550/arXiv.1112.0295
  18. Chen L., Yan Z., Tang W., Yang F., Xie X., He J. Mobile phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Computers in Human Behavior, 2016. Vol. 55, pp. 856–866.
  19. Chen I.F., Tsaur R.C., Chen P.Y. Selection of best smartphone using revised electre-iii method. International Journal of Information Technology & Decision Making, 2018. Vol. 17, pp. 1915–1936.
  20. Cheng L., De Vos J., Zhao P., Yang M., Witlox F. Examining non-linear built environment effects on elderly’s walking: A random forest approach. Transportation Research Part D: Transport and Environment, 2020. Vol. 88, pp. 102552–
  21. Chotpitayasunondh V., Douglas K.M. How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Computers in Human Behavior, 2016. Vol. 63, pp. 9–18.
  22. Clayton R.B., Leshner G., Almond A. The extended iSelf: The impact of iPhone separation on cognition, emotion, and physiology. Journal of Computer – Mediated Communication, 2015. Vol. 20, no. 2, pp. 119–135. DOI:10.1111/jcc4.12109
  23. Cohen J. A coefficient of agreement for nominal data. Educational and Psychological Measurement, 1960. Vol. 20, pp. 37–46.
  24. Courtice E.L., Shaughnessy K. Technology-mediated sexual interaction and relationships: A systematic review of the literature. Sexual and Relationship Therapy, 2017. Vol. 32, no. 3-4, pp. 269–
  25. Denti F. intRinsic: an R package for model-based estimation of the intrinsic dimension of a dataset. arXiv preprint arXiv:2102.11425. London: Routledge, 2021.DOI:48550/ARXIV.2102.11425
  26. De-Sola J., Talledo H., Rubio G., de Fonseca F.R. Psychological factors and alcohol use in problematic mobile phone use in the Spanish population. Frontiers in Psychiatry, 2017. Vol. 8, pp. 11– DOI:10.3389/fpsyt.2016.00175
  27. Dodaj A., Sesar K. Sexting categories. Mediterranean Journal of Clinical Psychology, 2020. Vol. 8, no. 2, pp. 1–
  28. Dupree J.M., Langille G.M. The Impact of the Environment on Sexual Health. In: Lipshultz L., Pastuszak A., Goldstein A., Giraldi A., Perelman M. (eds.). Management of Sexual Dysfunction in Men and Women. New York, NY: Springer, 2016, pp. 17–24.
  29. Eichenberg C., Schott M., Schroiff A. Comparison of students with and without problematic smartphone use in light of attachment style. Frontiers in Psychiatry, 2019. Vol. 10, pp. 681– DOI:10.3389/fpsyt.2019.00681
  30. Eleuteri S., Saladino V., Verrastro V. Identity, relationships, sexuality, and risky behaviors of adolescents in the context of social media. Sexual and Relationship Therapy, 2017. Vol. 32, no. 3, pp. 1–12. DOI:1080/14681994.2017.1397953
  31. Elhai J.D., Levine J.C., Dvorak R.D., Hall B.J. Fear of missing out, need for touch, anxiety, and depression are related to problematic smartphone use. Computers in Human Behavior, 2016. Vol. 63, pp. 509–516. DOI:1016/j.chb.2016.05.079
  32. Engeström Y. Innovative learning in work teams: Analyzing cycles of knowledge creation in practice. In Y. Engeström, R. Miettinen & R.-L. Punamäki (Eds.). Perspectives on Activity Theory. Learning in doing: Social, cognitive, and computational perspectives. Cambridge: Cambridge University Press, 1999, pp. 377–404.
  33. Ferguson C.J. Sexting behaviors among young Hispanic women: Incidence and association with other high-risk sexual behaviors. Psychiatric Quarterly, 2011. Vol. 82, pp. 239–243.
  34. Ferrante L., Venuleo C. Problematic Internet Use among adolescents and young adults: a systematic review of scholars’ conceptualisations after the publication of DSM-5. Mediterranean Journal of Clinical Psychology, 2021. Vol. 9, no. 2, pp. 12–33. DOI:10.13129/2282-1619/mjcp-3016
  35. Gao Q., Fu E., Xiang Y., Jia G., Wu S. Self-esteem and addictive smartphone use: the mediator role of anxiety and the moderator role of self-control. Child Youth Serv Rev, Vol. 124, pp. 105990–106004.
  36. Goldstein B.A., Hubbard A.E., Cutler A., Barcellos L.F. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings. BMC genetics, 2010. Vol. 11, no. 1, pp. 1–
  37. Hao Z., Jin L. Alexithymia and problematic mobile phone use: a moderated mediation model. Frontiers in Psychology, 2020. Vol. 11, pp. 541507–
  38. Hartanto A., Yang H. Is the smartphone a smart choice? The effect of smartphone separation on executive functions. Computers in Human Behavior, 2016. Vol. 64, pp. 329–336.
  39. Harwood J., Dooley J.J., Scott A.J., Joiner R. Constantly connected–The effects of smart-devices on mental health. Computers in Human Behavior, 2014. Vol. 34, pp. 267–272. DOI:1016/j.chb.2014.02.006
  40. Heitjan D.F., Basu S. Distinguishing “missing at random” and “missing completely at random”. The American Statistician, 1996. 50, no. 3, pp. 207–213.
  41. Hong F.-Y., Chiu S.-I., Huang D.-H. A model of the relationship between psychological characteristics, mobile phone addiction and use of mobile phones. Computers in Human Behavior, Vol. 114, pp. 106414–106431.
  42. Hong W., Liu R.-D., Oei T.-P., Zhen R., Jiang S., Sheng X. The mediating and moderating roles of social anxiety and relatedness need satisfaction on the relationship between shyness and problematic mobile phone use among adolescents. Computers in Human Behavior, 2019. Vol. 93, pp. 301–308.
  43. Horwood S., Anglim J. Personality and problematic smartphone use: A facet-level analysis using the five factor model and HEXACO frameworks. Computers in Human Behavior, 2018. Vol. 85, pp. 349–359. DOI:1016/j.chb.2018.04.013
  44. Ihm J. Social implications of children’s smartphone addiction: The role of support networks and social engagement. Journal of Behavioral Addictions, 2018. Vol. 7, no. 2, pp. 473–481.
  45. Kahneman D., Krueger A.B., Schkade D., Schwarz N., Stone A. Toward national well-being accounts. American Economic Review, 2004. 94, no. 2, pp. 429–434. DOI:10.1257/0002828041301713
  46. Kim E., Koh E. Avoidant attachment and smartphone addiction in college students: The mediating effects of anxiety and self-esteem. Computers in Human Behavior, 2018. Vol. 84, pp. 264–271. DOI:10.1016/j.chb.2018.02.037
  47. Kim J.H., Tam W.S., Muennig P. Sociodemographic correlates of sexlessness among American adults and associations with self-reported happiness levels: evidence from the U.S. General Social Survey. Archives of Sexual Behavior, 2017. Vol. 46, no. 8, pp. 2403–
  48. Király O., Demetrovics Z. Problematic internet use. In Király O., Demetrovics Z. (Eds.). Textbook of Addiction Treatment. New York: Springer, 2021, pp. 955–965.
  49. Konok V., Pogany A., Miklosi A. Mobile attachment: Separation from the mobile phone induces physiological and behavioural stress and attentional bias to separation-related stimuli. Computers in Human Behavior, 2017. Vol. 71, pp. 228–239.
  50. Krumpal I. Determinants of social desirability bias in sensitive surveys: a literature review. Quality & quantity, 2013. Vol. 47, no. 4, pp. 2025–2047.
  51. Kuhn M., Johnson K. Applied predictive modeling. New York: Springer, 600 p.
  52. Kuhn M. Caret: Classification and Regression Training. R package version 6.0-71. Cham: R-Studio, 2016.
  53. Kumcagiz H., Gündüz Y. Relationship between psychological well-being and smartphone addiction of university students. International Journal of Higher Education, 2016. Vol. 5, pp. 144–156.
  54. Kwon M., Kim D.-J., Cho H., Yang S. The Smartphone Addiction Scale: Development and Validation of a Short Version for Adolescents. PLoS One, 2014. Vol. 8, pp. e83558–e83572.
  55. Kwon H.E., So H., Han S.P., Oh W. Excessive dependence on mobile social apps: A rational addiction perspective. Information Systems Research, 2016. Vol. 27, no. 4, pp. 919–939. DOI:1287/isre.2016.0658
  56. Lapointe L., Boudreau-Pinsonneault C., Vaghefi I. Is smartphone usage truly smart? A qualitative investigation of it addictive behaviors. In 2013 46th Hawaii international conference on system sciences, 2013, pp. 1063–1072. DOI:1109/HICSS.2013.367
  57. Lee G., Rodriguez C., Madabhushi A. Investigating the Efficacy of Nonlinear Dimensionality Reduction Schemes in Classifying Gene and Protein Expression Studies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008. Vol. 5, no. 3, pp. 368–384. DOI:10.1109/tcbb.2008.36
  58. Lee H., Kim J.W., Choi T.Y. Risk factors for smartphone addiction in Korean adolescents: Smartphone use patterns. Journal of Korean Medical Science, 2017. Vol. 32, no. 10, pp. 1674–1679.
  59. Lepp A., Li J., Barkley J.E. College students’ cell phone use and attachment to parents and peers. Computers in Human Behavior, 2016. Vol. 64, pp. 401–408.
  60. Li L., Trisha L. Examining how dependence on smartphones at work relates to Chinese employees ́ workplace social capital, jobperformance, and smartphone addiction. SAGE, 2017. Vol. 34, no. 5, pp. 1–14. DOI:1177/0266666917721735
  61. Majeur D., Leclaire S., Raymond C., Léger P.M., Juster R.P., Lupien S.J. Mobile phone use in young adults who self‐identify as being “Very stressed out” or “Zen”: An exploratory study. Stress and Health, 2020. Vol. 36, no. 5, pp. 606–614.
  62. Malley J.D., Malley K.G., Pajevic S. Statistical Learning for Biomedical Data. Cambridge: Cambridge University Press, 2011. 298 p.
  63. Mercer C.H., Tanton C., Prah P. et al. Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet, 2013. Vol. 382, pp. 1781–1794. DOI:10.1016/S0140-6736(13)62035-8
  64. Meskó N., Őry F. The functioning of the sexual system questionnaire is the Hungarian version (SSFS). Magyar Pszichológiai Szemle, 2023. Vol. 78, no. 1, pp. 113–134.
  65. Nahas M., Hlais S., Saberian C., Antoun J. Problematic smartphone use among Lebanese adults aged 18–65 years using MPPUS-10. Computers in Human Behavior, 2018. Vol. 87, pp. 348–353. DOI:1016/j.chb.2018.06.009
  66. Ueda P., Mercer C.H., Ghaznavi C., Herbenick D. Trends in frequency of sexual activity and number of sexual partners among adults aged 18 to 44 years in the US, 2000-2018. JAMA Network Open, 2020. Vol. 3, no. 6, pp. e203833–e203833.
  67. Panda A., Jain N.K. Compulsive smartphone usage and users’ ill-being among young Indians: Does personality matter? Telematics and Informatics, 2018. Vol. 35, no. 5, pp. 1355–1372. DOI:1016/j.tele.2018.03.006
  68. Parasuraman S., Sam A.T., Yee S., Chuon B., Ren L.Y. Smartphone usage and increased risk of mobile phone addiction: a concurrent study. International Journal of Pharmaceutical Investigation, 2017. Vol. 7, pp. 125–131. DOI:10.4103/jphi.JPHI_56_17
  69. Pinho C., Franco M., Mendes L. Application of innovation diffusion theory to the E-learning process: Higher education context. Education and Information Technologies, 2021. Vol. 26, no. 1, pp. 421–440. DOI:1007/s10639-020-10269-2
  70. Ploton P., Mortier F., Réjou-Méchain M., Barbier N., Picard N., Rossi V., Pélissier R. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nature communications, 2020. Vol. 11, no. 1, pp. 4540–4562.
  71. Posit team RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston: MA, 2023.
  72. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing,
  73. Reuver M., Bouwman H. Dealing with self-report bias in mobile Internet acceptance and usage studies. Information & Management, 2015. 52, no. 3, pp. 287–294.
  74. Rissel C., Badcock P.B., Smith A.M., Richters J., De Visser R.O., Grulich A.E., Simpson J.M. Heterosexual experience and recent heterosexual encounters among Australian adults: the Second Australian Study of Health and Relationships. Sexual Health, 2014. Vol. 11, no. 5, pp. 416–426.
  75. Rozgonjuk D., Kattago M., Täht K. Social media use in lectures mediates the relationship between procrastination and problematic smartphone use. Computers in Human Behavior, 2018. Vol. 89, pp. 191–198. DOI:1016/j.chb.2018.08.003
  76. Rozza A., Lombardi G., Rosa M., Casiraghi E., Campadelli P. IDEA: Intrinsic Dimension Estimation Algorithm. In Maino G., Foresti G.L. (Eds.). Image Analysis and Processing. Springer- Verlag, 2011. Vol. 6978, pp. 433–442. DOI:10.1007/978-3-642-24085-0_45
  77. Sapacz M., Rockman G., Clark J. Are we addicted to our cell phones? Computers in Human Behavior, 2016. Vol. 57, pp. 153–159.
  78. Saraçli S., Doğan N., Doğan İ. Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of inequalities and Applications, 2013. Vol. 1, pp. 1–8.
  79. Schmiedeberg C., Huyer-May B., Castiglioni L., Johnson M.D. The more or the better? how sex contributes to life satisfaction. Archives of Sexual Behavior, 2017. Vol. 46, no. 2, pp. 465–473.
  80. Sullivan J.H., Warkentin M., Wallace L. So many ways for assessing outliers: What really works and does it matter? Journal of Business Research, 2021. Vol. 132, pp. 530–543.
  81. Starrs A.M., Ezeh A.C., Barker G. Accelerate progress–sexual and reproductive health and rights for all: report of the Guttmacher–Lancet Commission. Lancet, 2018. Vol. 391, pp. 2642–2692. DOI:10.1016/S0140-6736(18)30293-9
  82. Steelman Z.R., Soror A.A. Why do you keep doing that? The biasing effects of mental states on IT continued usage intentions. Computers in Human Behavior, 2017. Vol. 73, pp. 209–223. DOI:1016/j.chb.2017.03.027
  83. Tenenbaum J.B., De Silva V., Langford J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000. Vol. 290, pp. 2319–2323.
  84. Thomee S., Dellve L., Harenstam A., Hagberg M. Perceived connections between information and communication technology use and mental symptoms among young adults – a qualitative study. BMC Public Health, 2010. Vol. 10, no. 1, pp. 66–82.
  85. Turel O., Mouttapa M., Donato E. Cyber spaces/social interactions. Preventing problematic internet use through video-based interventions: A theoretical model and empirical test. Behaviour & Information Technology, 2015. Vol. 34, pp. 349–362. DOI:10.1080/0144929X.2014.936041
  86. Twenge J.M., Sherman R.A., Wells B.E. Changes in American adults’ reported same-sex sexual experiences and attitudes, 1973–2014. Archives of Sexual Behavior, 2016. Vol. 45, no. 7, pp. 1713–1730.
  87. We Are Social & Hootsuite. (report). Digital 2023. Retrieved June 7, 2023. URL:https://datareportal.com/reports/digital-2023-global-overview-report (Accessed 14.04.2024).
  88. Wellings K., Johnson A.M. Framing sexual health research: adopting a broader perspective. Lancet, 2013. Vol. 382, pp. 1759–1762. DOI:10.1016/S0140-6736(13)62378-8
  89. Wellings K., Palmer M.J., Machiyama K., Slaymaker E. Changes in, and factors associated with, frequency of sex in Britain: evidence from three National Surveys of Sexual Attitudes and Lifestyles (Natsal). British Medical Journal, 2019. Vol. 365, pp. l1525–l1542. DOI:10.1136/bmj.l1525
  90. Yook I.H., Park S.J., Choi M.J., Kim D.-J., Choi I.Y. Factors affecting smartphone usage self-report levels. Studies in Health Technology and Informatics, 2019. Vol. 264, pp. 1937–1938. DOI:3233/shti190722

Информация об авторах

Гоштоньи Мартон, PhD, старший преподаватель, Малайский университет, Куала-Лумпур, Малайзия, ORCID: https://orcid.org/0000-0003-1887-4913, e-mail: gosztonyi.marton@gmail.com

Метрики

Просмотров

Всего: 270
В прошлом месяце: 40
В текущем месяце: 10

Скачиваний

Всего: 95
В прошлом месяце: 14
В текущем месяце: 9