Зрительный прайминг у детей с расстройствами аутистического спектра

268

Аннотация

Работа посвящена изучению особенностей временной динамики зрительного прайминга у детей с расстройствами аутистического спектра (РАС). В исследовании приняли участие 60 детей дошкольного возраста, из них 20 детей с типичным развитием (5 девочек и 15 мальчиков, возраст — 6,4±0,4 лет), 20 детей с РАС легкой формы (все мальчики, возраст — 6,7+0,3 лет), 20 детей с умеренными РАС (18 мальчиков и 2 девочки, возраст — 6,6±0,4 лет), 20 детей с РАС тяжелой формы (17 мальчиков и 3 девочки, возраст — 6,8±0,2 лет). В качестве методической модели исследования использовалась парадигма прайминга. Целевые стимулы имели вид решеток, состоящих из горизонтальных и вертикальных линий с частотой следования 10 циклов на градус. Прайм-стимул в виде вертикальной решетки с частотой следования 2 цикла на градус предъявлялся с опережением целевого стимула на 50÷600 мс. В ходе исследования было установлено, что в отличие от группы детей с типичным развитием во всех группах детей с РАС влияние прайма отсутствовало при межстимульных интервалах (МСИ) 50÷150 мс. Время реакции на целевые стимулы начинало снижаться только при МСИ 200÷600 мс у детей с легкими и умеренными РАС и при МСИ 200÷300 мс — у детей с тяжелыми РАС. Полученные результаты свидетельствуют о том, что по сравнению с нормально развивающимися детьми у детей с РАС изменяется временной характер взаимодействия прайма с целевыми стимулами. У детей с разным уровнем тяжести симптоматики РАС наблюдаемые изменения проявляются в разные временные интервалы после прайма.

Общая информация

Ключевые слова: зрительный прайминг, дошкольный возраст, расстройства аутистического спектра, восприятие

Рубрика издания: Эмпирические исследования

Тип материала: научная статья

DOI: https://doi.org/10.17759/cpse.2022110109

Финансирование. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (РФФИ) в рамках научного проекта № 17-06-00644-ОГН

Благодарности. Авторы благодарят за помощь в организации работы коллектив с Санкт-Петербургского «Центра реабилитации ребенка»

Получена: 29.06.2021

Принята в печать:

Для цитаты: Черенкова Л.В., Соколова Л.В. Зрительный прайминг у детей с расстройствами аутистического спектра [Электронный ресурс] // Клиническая и специальная психология. 2022. Том 11. № 1. С. 192–209. DOI: 10.17759/cpse.2022110109

Полный текст

Введение

В настоящее время не вызывает сомнения наличие особого типа восприятия
у людей с расстройством аутистического спектра (РАС) [Haigh, 2018]. Людям с РАС характерны фрагментарность восприятия и повышенное внимание к отдельным несущественным для общего контекста элементам зрительной сцены, что затрудняет интеграцию этих элементов в единый репрезентативный образ [Robertson, 2017]. Формирование репрезентативного образа обычно базируется на иерархически организованном взаимодействии процессов обработки зрительной информации на разных уровнях нервной системы [Kimchi, 2015]. При аутизме и РАС наблюдается иной тип интеграции, который проявляется уже на нижних уровнях нервной системы, где выделяются
и взаимодействуют элементарные признаки воспринимаемых объектов. Так,
в одной из работ было высказано предположение о том, что при аутизме более развиты системы, ответственные за переработку высокочастотной пространственной информации по сравнению с низкочастотной [Sutherland, 2010]. Однако результаты другого исследования показывают, что восприятие глобальных образов, содержащих низкие пространственные частоты, возможно и при аутизме, если к ним привлекать внимание испытуемых [Van der Hallen, 2016]. Это направило исследователей на изучение процессов сенсорного внимания, так как именно механизмы распределения и переключения внимания обусловливают накопление сенсорного опыта, необходимого для процесса репрезентации [Kristjansson, 2019; Shomstein, 2012]. При РАС отмечают особый характер организации функции внимания и механизмов его мозгового обеспечения [Amso, 2014]. Однако характеристики «антиципирующего внимания», связанного с функцией распределения внимания между отдельными элементами текущей и упреждающей информации, поступающей последовательно во времени, при аутизме и РАС изучены мало.

Одновременно исследовать характеристики процессов интеграции информации
и сенсорного внимания позволяет процедура прайминга. Зрительный прайминг представляет собой изменение способности идентифицировать, воспроизводить или классифицировать текущие объекты под влиянием восприятия уже предъявлявшейся прежде зрительной информации [Janiszewski, 2014]. Под влиянием этой информации могут изменяться показатели успешности и скорости реакции на текущие стимулы в зависимости от их сходства с предваряющей информацией (праймом). При полном подобии прайма и целевых стимулов (повторный прайминг) параметры реакции улучшаются, а при несоответствии прайма целевым объектам скорость и точность реакции ухудшаются (отрицательный прайминг) [Janiszewski, 2014]. Когда прайм и целевой стимул отличаются по отдельным параметрам, знак и величина изменения реакции (прайминг-эффект) будут зависеть от наличия общих признаков в их составе, таких как цвет, пространственное положение, ориентация, отдельные локальные элементы, общая конфигурация [Janiszewski, 2014; Kristjansson, 2019; McLaughlin, 2021; Mo, 2019; Pokhoday, 2019]. Выявление характеристик изменения параметров реакции под влиянием прайма способствует определению тех признаков объектов, которые являются значимыми при обработке и отборе информации, необходимой для реализации деятельности. Особый случай представляет изучение эффекта прайминга при изменении времени задержки между праймом и целевым стимулом в пределах сотен миллисекунд, в течение которых априорная и текущая виды информации обрабатываются и взаимодействуют. Эти исследования позволяют установить, на каком уровне нервной системы
и с участием каких механизмов происходит отбор значимой информации.

В настоящее время экспериментально показано, что в зависимости от задержки между моментами включения прайма и целевого стимула реализуются разные механизмы обработки зрительной информации и процессов произвольного селективного внимания [Черенкова, 2021].

В последнее время все чаще высказывается предположение, что одной из причин особенностей восприятия у людей с РАС является именно неспособность эффективно использовать априорную информацию [Soroor, 2022]. Сравнительный анализ работ разных авторов свидетельствует об отсутствии единого мнения
о характеристиках проявления прайминг-эффекта при аутизме и РАС. Одни исследователи указывают на отсутствие различий между людьми с аутизмом
и нейротипичными испытуемыми [Wilson, 2019]. Другие работы приводят данные об ином характере проявления эффекта прайминга у аутистов [Soroor, 2022]. При этом люди
с аутизмом могут как превосходить испытуемых из контрольных групп по показателям реакции (например, при выделении локальных элементов, присутствующих в прайме и целевых стимулах) [Vanmarcke, 2017], так и испытывать сравнительно бόльшие трудности, возникающие при выделении глобальных элементов объектов, использовании в качестве прайма и целевого стимулов сложных изображений, изображений неопределенной конфигурации [Pokhoday, 2019; Soroor, 2022; Van der Hallen, 2016].

В последние годы убедительно показано, что при аутизме в значительной мере страдают процессы, связанные с обработкой информации на нижних уровнях зрительной системы [Macaluso, 2016]. В связи с этим использование в процедуре прайминга объектов, содержащих простые признаки стимулов (такие как ориентация, пространственная частота), весьма актуальны для определения характеристик зрительного восприятия при аутизме.

Большинство рассмотренных исследований были проведены с участием людей, имеющих аутистический спектр, без контроля их уровня интеллекта и различий
в степени проявления тяжести РАС, тогда как работы, посвященные анализу проявления прайминга при сниженном уровне интеллекта и разной выраженности РАС, единичны [Черенкова, 2020а; McLaughlin, 2021]. При этом авторы концентрируют внимание на анализе прайминга у лиц с РАС подросткового и зрелого возрастов [Vanmarcke, 2017]. Однако одним их критических периодов развития процессов восприятия и произвольного внимания, которые тестируются при прайминге, является дошкольный возраст. Изучение проявления прайминга у детей данной возрастной группы позволит установить особенности и этапы формирования зрительного восприятия при РАС.

Гипотеза исследования состояла в том, что у детей дошкольного возраста
с РАС, имеющих разную степень выраженности расстройства, а также более низкий уровень интеллекта и речевого развития по сравнению с нейротипичными сверстниками, наблюдается измененный характер взаимодействия элементарных признаков объектов (ориентация линий и их пространственная частота) на разных временных этапах восприятия зрительной информации.

В задачи исследования входило сравнение характеристик и временной динамики зрительного прайминга при использовании простых зрительных стимулов у детей дошкольного возраста с типичным развитием и с разным уровнем выраженности РАС.

Методы исследования

Выборка. В исследовании приняли участие 20 детей с типичным развитием (из них 5 девочек, возраст — 6,1–6,9 лет) и 60 детей с РАС (из них 4 девочки, возраст — 6,1–7,0 лет). Все дети посещали дошкольное отделение начальной школы № 687 «Центр реабилитации ребенка» г. Санкт-Петербурга.

 Дети с типичным развитием были протестированы с помощью теста
Д. Векслера для детей дошкольного возраста (WHHSI), адаптированного в России [Ильина, 2009]. Анализ результатов показал, что вербальный IQ варьировал от 110 до 128 баллов, невербальный IQ — от 116 до 134 баллов, что соответствовало уровню нормативного развития (табл.).

Таблица

Характеристики обследуемых субвыборок испытуемых

Группа детей

Количество детей

Возраст

Оценка тяжести РАС

Оценка IQ

Уровень общего недоразвития речи

M±SD; диапазон
в годах

M±SD; диапазон
в баллах

M±SD; диапазон в баллах

Дети
с типичным развитием

20

(15 мальчиков,
5 девочек)

 

6,4±0,4;

6,1–6,9

 

По Векслеру:

Вербальный IQ 119,0±9,0; 110,0–128,0

Невербальный IQ

125,0±9,0; 116,0–134,0

 

Дети
с легкой формой РАС

20

(все мальчики)

6,7±0,3;

6,3–7,1

32,0±2,0;

30,0–34,0

по LIPS

Невербальный IQ

65,0±6,0; 59,0–70,0

ОНР II

(формулируют предложения)

Дети
с умеренной тяжестью РАС

20

(18 мальчиков,
2 девочки)

6,6±0,4;

6,1–7,1

 

39,0±3,0;

36,0–42,0

по LIPS

Невербальный IQ

52,0±4,0; 48,0–56,0

ОНР II-I

(говорят отдельные слова)

Дети
с тяжелой формой РАС

20

(18 мальчиков,
2 девочки

6,8±0,2;

6,5–7,2

47,0±3,0;

44,0–49,0

по LIPS

Невербальный IQ

45,0±4,0; 41,0–49,0

ОНР I

(произносят отдельные звуки)

Отбор детей с РАС проводился консилиумом специалистов Центра реабилитации ребенка. Все дети в соответствии с МКБ-10 имели диагноз «РАС, обусловленное органическим заболеванием головного мозга, сопровождающемся задержкой психического развития, на резидуально-органической основе». Выраженность РАС устанавливалась по Оценочной шкале раннего детского аутизма — CАRS (Childhood Autism Rating Scale) [Schopler, 1980]. В соответствии с результатами диагностики по CARS были выделены три группы: I группа — дети с легкой формой РАС (30–34 балла), II группа — с умеренной тяжестью РАС (36–42 балла) и III группа — дети с тяжелой формой РАС (44–49 баллов).

Уровень невербального IQ у детей с РАС оценивали по Международной шкале продуктивности Лейтер — LIPS (Leiter International Performance Scale) [Roid, 2013]. У детей I группы показатели невербального IQ составили 59–70 баллов, у детей второй группы II группы — 48–56 баллов и у детей III группы — 44–49 баллов. Уровень речевого развития определялся c помощью анализа речевых карт [Нищева, 2007] и у детей I группы соответствовал ОНР II, у детей II группы — ОНР II-I, а у детей III группы — ОНР I (табл.).

Все испытуемые использовали правую руку в качестве ведущей и не имели проблем со зрением и слухом. Родители детей выразили добровольное согласие на их участие в исследовании. Проведение исследования одобрено Этическим комитетом Санкт-Петербургского государственного университета.

Стимулы. В качестве целевых стимулов использовались изображения вертикальных и горизонтальных линий с частотой следования 10 циклов на градус. В качестве прайм-стимулов в центре экрана компьютера предъявлялась вертикальная решетка с частотой следования линий 2 цикла на градус из базы данных «Sutterstock». Яркость фона экрана компьютера составляла 30 кд/м2, максимальная яркость изображения — 60 кд/м2, размер изображения — 8 угловых градусов, длительность предъявления целевых стимулов составляла 200 мс,
а прайм-стимула — 100 мс. Межстимульный интервал (МСИ) между окончанием предъявления прайма и началом предъявления тестового стимула варьировал от 50 до 600 мс (рис. 1).

Рис. 1. Схема предъявления стимулов

Процедура исследования. Тестирование испытуемых проводилось в знакомой обстановке. Испытуемый удобно располагался перед компьютером, расстояние от экрана монитора не превышало 50 см. Освещенность помещения составляла 120 люкс. Для предъявления стимулов использовали ноутбук Samsung R40-1 с размером экрана 17 дюймов с установленной программой PsyTask v. 1.50.12. (ООО «Мицар»,
г. Санкт-Петербург, Россия).

Перед началом тестирования проводилось обучение задаче по различению двух целевых стимулов. В ответ на предъявления первого стимула необходимо было нажать на левую клавишу компьютера (20 попыток), а в ответ на предъявления второго — на правую клавишу компьютера (20 попыток). Все стимулы предъявлялись в случайном порядке с интервалом между пробами от 1,5 до 2,5 с.

При тестировании в равном количестве и в случайном порядке предъявлялись комбинации целевых и прайм-стимулов. Было проведено два теста, в каждом из которых применялись МСИ четырех значений (50, 100, 150 и 200 мс; 300, 400, 500
и 600 мс). В каждом тесте предъявлялось 80 сочетаний стимулов (по 20 проб
с каждым значением МСИ) с интервалом между пробами в 1,5–2,5 с. Время реакции (ВР) регистрировалось с помощью программы PsyTask во время обучения
и тестирования.

Анализ результатов. Статистическая обработка данных проводилась
в программе Statistica v. 13. Распределение переменных по всей выборке соответствовало нормальному (тест Колмогорова–Смирнова: d=0,25; р=0,200), что позволило использовать для анализа параметрические критерии — t-тест Стьюдента
и дисперсионный анализ ANOVA для повторных измерений. Для сравнения изменения параметров реакций в зависимости от условий предъявления стимулов (с праймом или без, предъявление прайма и тестового стимулов с разными МСИ) использовали модель анализа для внутригрупповых зависимых факторов. При статистическом анализе зависимости величины прайминг-эффекта от выраженности РАС и уровня интеллекта факторы «группа» (группа детей в соответствии с уровнем выраженности РАС) и «IQ» (показатель интеллекта) рассматривали в качестве независимых. Для анализа ВР отбирались только правильные реакции (92,66% из всех проб). Значения ВР, которые превышали 2 стандартных отклонения от средней величины, не включались в обработку данных (2,37% из всех проб). При статистической обработке для каждого испытуемого определялась величина прайминг-эффекта при каждом значении МСИ по разнице между средними значениями ВР на предъявление только целевого стимула и сочетания целевого
и прайм-стимулов. Далее полученные разности усреднялись по группам испытуемых. Достоверность различий данных устанавливалась с помощью метода парных сравнений Стьюдента. Достоверными считали различия при р≤0,05.

Результаты

Обучение. Дети с нейротипичным развитием и дети с легкой формой РАС
в первый день тренировки верно дифференцировали целевые стимулы в 94–98% (М=96,4; SD=0,2) случаев. У остальных детей процесс обучения занимал три дня. Число правильных ответов к концу обучения варьировало в пределах 86–94% (М=90,6; SD=0,5). ВР на линии разной ориентации сильно варьировало в пределах выборки. При этом ВР у детей с типичным развитием и легкой формой РАС достоверно не отличалось (M=1003 мс, SD=95, диапазон — 849–1099 мс и М=1052 мс, SD=105, диапазон — 788–1184 мс соответственно, t=1,22, р=0,240). В то же время
у детей с умеренной и тяжелой формами РАС ВР было достоверно больше по сравнению с предыдущими группами (М=1734 мс, SD=233, диапазон — 1418–1890 мс и М=1746 мс, SD=171, диапазон — 144–1860 мс соответственно, t=5,41, p˂0,001). Между значениями ВР у групп детей с умеренной и тяжелой формой РАС достоверных различий выявлено не было (t=0,74, р=0,670).

Тестирование нейротипичных детей. Предъявление вертикальных линий
с низкой частотой следования приводило к достоверному снижению ВР при идентификации вертикальных линий с высокой частотой следования (M=1001 мс, SD=93, диапазон — 849–1080 мс при обучении и M=902 мс, SD=43, диапазон — 885–931 мс при тестировании; t=4,65, p˂0,001). В случае идентификации горизонтальных линий с высокой частотой следования значимых изменений ВР не наблюдалось (M=998 мс, SD=67, диапазон — 849–1096 мс при обучении и M=1004 мс, SD=69, диапазон — 978–1023 мс при тестировании; t=0,95, p=0,450) (рис. 2).

Рис. 2. Временная динамика прайминг-эффекта у детей с типичным развитием

Примечания. Вертикальные линии обозначают доверительный интервал при р≤0,05.

Дисперсионный анализ показал зависимость величины прайминг-эффекта от типа идентифицируемого (целевого) стимула (F(1; 158)=170,69, p˂0,001). Не было отмечено зависимости этой величины от IQ (F(1; 158)=7,69, p=0,350). В то же время зависимость величины прайминг-эффекта от МСИ не была значимой ни для реакций на вертикальные линии (F(7; 152)=0,76, p=0,620), ни для реакций на горизонтальные линии (F(7; 152)=0,91, р=0,510). Однако более детальный анализ продемонстрировал, что при идентификации вертикальных линий при МСИ от 50 до 150 мс величина прайминг-эффекта прогрессивно растет (F(2; 57)=19,75, p˂0,001), а при МСИ от 200 до 600 мс остается стабильной (F(4; 95)=1,58, p=0,090).

Тестирование детей с легкой формой РАС. У детей этой группы при введении прайм-стимула наблюдалась иная картина (рис. 3). ВР снижалось не только при предъявлении вертикальных линий (М=1001 мс, SD=105, диапазон — 927–1139 мс при обучении и M=961 мс, SD=109, диапазон — 874–1062 мс при тестировании; t=2,07, p=0,030). Идентификация горизонтальных линий также сопровождалась уменьшением ВР (M=1068 мс, SD=201, диапазон — 788–1184мс при обучении и M=995 мс, SD=114, диапазон — 922–1074 мс при тестировании; t=2,14, p=0,020). Попарное сравнение ВР на экспозицию вертикальных и горизонтальных линий после прайма не выявило достоверных различий ни при одном значении МСИ (t=2,09, p=0,150).

Дисперсионный анализ данных показал, что величина прайминг-эффекта значимо зависит от МСИ (F(7; 152)=14,91, p˂0,001). Однако детальный анализ показал, что при МСИ в 50, 100 и 150 мс снижение ВР на оба типа целевых стимулов не было значимым (t=1,17, p=0,250; t=0,29, p=0,370 и t=0,92, p=0,360, соответственно). Между тем в интервале задержек от 200 до 600 мс уменьшение ВР было достоверным и стабильным независимо от значения МСИ (F(4; 95)=31,68, p˂0,001). Зависимость величины прайминг-эффекта от уровня интеллекта не была значимой (F(1; 152)=170,69, p˂0,001).

Рис. 3. Временная динамика прайминг-эффекта у детей с легкой формой РАС

Примечания. Вертикальные линии обозначают доверительный интервал при р≤0,05.

Тестирование детей с умеренной формой РАС. Как и у детей с легкой формой РАС, при введении прайм-стимула наблюдалось снижение ВР на предъявление как вертикальных (М=1739 мс, SD=234; диапазон — 1524–1900 мс при обучении
и M=1525 мс; SD=187; диапазон — 1407–1716 мс при тестировании; t=2,48, p=0,010), так и горизонтальных линий (M=1628 мс, SD=235, диапазон — 1523–1723 мс при обучении и M=1632 мс, SD=214, диапазон — 1461–1735 мс при тестировании; t=2,57, p=0,010). ANOVA не выявил зависимости прайминг-эффекта от типа целевого стимула (F(1; 158)=2,97, р=0,540) (рис. 4).

Рис. 4. Временная динамика прайминг-эффекта у детей с умеренной формой РАС

Примечания. Вертикальные линии обозначают доверительный интервал при р≤0,05.

Как и у детей с легкой формой РАС, анализ динамики изменения прайминг-эффекта показал значимую зависимость от увеличения МСИ при идентификации
и горизонтальных, и вертикальных линий (F(7; 152)=12,27, p˂0,001), но не выявил зависимости прайминг-эффекта от величины IQ (F(2; 158)=2,47, p=0,150).

Анализ изменения прайминг-эффекта при разных значениях МСИ установил, что при МСИ в интервале от 50 до 150 мс величина прайминг-эффекта не достигала значимых значений (F(2; 57)=2,18, p=0,060). При МСИ от 200 до 600 мс ВР изменялось в разном направлении. При МСИ 200 и 300 мс значение прайминг-эффекта было значимым на оба стимула (t=4,41, p=0,040), при задержках 400 и 500 мс достоверно возрастало (t=9,48, p=0,010), а при 600 мс достоверно снижалось (t=8,41, p=0,020) (рис. 4).

Тестирование детей с тяжелой формой РАС. Как и у детей с легкой
и умеренной формами РАС, у детей данной группы при введении прайм-стимула происходило снижение ВР как в случае экспозиции вертикальных (М=1747 мс, SD=138, диапазон — 1592–1951 мс при обучении и M=1603 мс, SD=199, диапазон — 1491–1614 мс при тестировании; t=2,31, р=0,030), так и горизонтальных линий (M=1745 мс, SD=193, диапазон — 1441–1967 мс при обучении и M=1632 мс, SD=214, диапазон — 1461–1735 мс при тестировании; t=2,54, р=0,020) (рис. 5).

Дисперсионный анализ не выявил значимой зависимости величины прайминг-эффекта от типа стимула (F(1; 158)=2,09, p=0,150) и от величины IQ (F(1; 158)=2,24, р=0,180). Анализ временной динамики прайминг-эффекта показал значимую зависимость величины прайминг-эффекта от МСИ при идентификации
и горизонтальных, и вертикальных линий, так же как у предыдущих групп детей (F(7; 152)=2,69, p=0,010). Анализ изменения прайминг-эффекта при разных значениях МСИ установил, что при МСИ в интервале от 50 до 150 мс величина прайминг-эффекта не достигала значимых значений (F(2; 58)=2,18, p=0,060). Было установлено, что, как и у детей с умеренной формой РАС, при МСИ в 200 и 300 мс значение прайминг-эффекта на оба стимула достоверно возрастало (t=7,89, p=0,010), а при МСИ в 400, 500 и 600 мс вновь не достигала значимых значений (t=1,41, p=0,080) (рис. 5). Сравнение средней величины прайминг-эффекта у разных групп детей не выявил ее значимой зависимости от факторов «группа» (F(3;76)=1,17, p=0,210) и «IQ» (F(1;76)=2,19, p=0,340). Детальный анализ проявления прайминга при разных МСИ позволил выявить достоверность зависимости прайминг-эффекта от данных факторов только в интервале задержек 50–150 мс (F(3;76)=68,87, p˂0,001; F(1;76)=59,47, p˂0,001).

Рис. 5. Временная динамика прайминг-эффекта у детей с тяжелой формой РАС

Примечания. Вертикальные линии обозначают доверительный интервал при р≤0,05.

Полученные результаты показали, что у детей с РАС в отличие от нейротипичных детей наблюдается измененный характер зрительного прайминга при использовании простых зрительных стимулов. Скорость реакции возрастает на линии разной ориентации независимо от отсутствия/присутствия этой ориентации в прайме. У детей с разной выраженностью РАС наблюдаемый эффект уменьшения времени реакции отмечается при разных временных задержках между праймом
и целевым стимулом.

Обсуждение результатов

Исследование зрительного прайминга у детей дошкольного возраста с РАС разной тяжести позволило выявить особенности временной динамики эффекта прайминга при идентификации простых зрительных стимулов.

В первую очередь необходимо отметить, что у всех детей с РАС влияние предъявления прайма не зависит от свойств идентифицируемого изображения. Если для нейротипичных детей характерно уменьшение ВР только на тот стимул, который включает ориентацию линий, аналогичную ориентации линий в прайме, то у детей с РАС ускорение реакции возможно и на стимул, включающий иную ориентацию линий. Наличие четкой диссоциации влияния прайма у нейротипичных детей свидетельствует о том, что в возрасте шести лет уже сформированы механизмы выделения общего для прайма и целевого стимула ведущего признака, что подтверждают работы ряда авторов [Черенкова, 2021; Kristjansson, 2019]. У детей с РАС проявление этих механизмов не наблюдается, что согласуется с работами, которые показали отсутствие способности непроизвольно концентрировать внимание на глобальных элементах объектов внешнего мира при РАС [4–6]. Встает вопрос о процессах обработки информации, которые лежат в основе специфической реакции, выявленной у детей с РАС. Ответить на этот вопрос помогает анализ временной динамики прайминга.

У нейротипичных детей достоверное влияние прайма отмечается уже при МСИ в 50 мс. Нейрофизиологические данные свидетельствуют о том, что в период задержек целевого стимула от начала прайма (SOA) до 300 мс нейроны ассоциативных областей коры у обезьян кодируют факт наличия двух стимулов на входе сенсорной системы [Carlson, 2013]. В нашей модели прайминга при МСИ, равном 50 мс, SOA составляет 150 мс. Следовательно, уже в первые 150 мс дети с типичным развитием способны выделить значимый элемент стимула, являющийся общим для прайма и целевого объекта.

У всех обследованных детей с РАС при МСИ до 150 мс (SOA=250 мс) достоверное влияние прайма на идентификацию целевых стимулов отсутствовало. Данные литературы о временных параметрах взаимодействия сенсорных входов позволяют выдвинуть несколько причин, обусловливающих полученные результаты. С одной стороны, была предложена модель независимого взаимодействия сенсорных входов, которая характерна для ранних периодов онтогенеза [Miller, 1982]. Согласно этой модели, каждый сенсорный вход может самостоятельно конкурировать за выход на соответствующую реакцию организма. В результате можно наблюдать последовательную череду реакций то на один, то на другой сигнал. Согласно этой точке зрения, отсутствие влияния прайма у детей с РАС может говорить
о незрелости процессов взаимодействия сенсорной информации. Аналогичный тип взаимодействия проявляется у нейротипичных детей четырех лет при использовании процедуры прайминга с гетеросенсорными объектами [Черенкова, 2020; Черенкова, 2020а].

С другой стороны, имеются данные о задержке процесса взаимодействия сенсорных входов на уровне зрительных областей коры при РАС. В отношении стимулов с разной пространственной частотой показано, что при РАС информация по низкочастотному каналу приходит значительно позже по сравнению
с информацией по высокочастотному каналу [Sutherland, 2010]. Это означает, что процесс взаимодействия зрительных сигналов может быть задержан по времени от начала действия прайма — в нашем случае на 250 мс.

Интервал между праймом и целевым стимулом от 300 до 600 мс рассматривается в нейрофизиологических исследованиях и работах по праймингу как время, необходимое для сличения уже опознанных объектов и сдвига внимания в сторону идентифицируемых стимулов, требующих соответствующей реакции [Carlson, 2013]. В этот период влияние прайма постепенно нивелируется, что отражается
в отсутствии прироста эффекта облегчения реакции. Это хорошо просматривается у нейротипичных детей. Если при задержках до 150 мс отмечается сокращение ВР, то после 200 мс его зависимость от МСИ достоверно не выражена. При РАС, напротив, именно в этот период эффект прайминга приобретает достоверные значения. Дети быстрее реагируют на предъявление как вертикальных, так и горизонтальных линий. Подобное проявление прайминга может свидетельствовать о нарушении процессов нисходящей регуляции переключения внимания между опознанными стимулами, что было показано в исследовании, проведенном на взрослых
и подростках с аутизмом [Macaluso, 2016]. При этом можно предположить, что у детей с РАС длительный процесс взаимодействия информации о прайме и целевом стимуле влечет за собой позднее включение механизмов переключения внимания от прайма к целевому стимулу. Следовательно, отсутствие сдвига внимания в сторону целевых стимулов может быть связано как с изменением механизмов взаимодействия информации на уровне проекционных областей коры (первые 250 мс), так и от характера включающейся позднее регуляции этого процесса со стороны зрительных ассоциативных областей коры [Sutherland, 2010].

У детей с тяжелой формой РАС достоверный прайминг-эффект отмечен только при МСИ в 200 и 300 мс. В отличие от детей первых двух групп, в интервале МСИ от 400 до 600 мс прайминг-эффект проявляется случайно. Можно предположить, что процесс сличения уже опознанных стимулов в этом случае происходит на независимой конкурентной основе, как в модели независимого взаимодействия входной информации, а реакция реализуется в ответ то на один, то на другой целевые стимулы. Однако после опознания стимулов, использованных в процедуре прайминга, такое независимое соперничество взаимодействующей информации возможно только вследствие изменения механизма нисходящей регуляции процессов внимания [Sutherland, 2010].

Заключение

Полученные в ходе исследования результаты свидетельствуют о специфических особенностях проявления зрительного прайминга у детей дошкольного возраста
с РАС по сравнению с детьми с типичным развитием. У нейротипичных детей прайм вызывает уменьшение ВР только на один целевой стимул. У детей с РАС влияние априорной информации отсутствует при задержке целевых стимулов относительно прайма от 50 до 150 мс. У детей с легкой и умеренной формами РАС уменьшение ВР наблюдается для всех целевых стимулов в интервале МСИ от 200 до 600 мс, а у детей с тяжелой формой РАС — при МСИ в 200 и 300 мс. Наблюдаемая временная динамика взаимодействия зрительной информации может свидетельствовать об изменении процессов мономодального взаимодействия на нижних уровнях сенсорной системы и нарушений сдвига внимания между праймом и целевым стимулом, обусловленным как в восходящей системе регуляции внимания, так
и в системе нисходящей регуляции внимания в зависимости от уровня проявления аутистических симптомов.

К ограничениям проведенного исследования необходимо отнести сравнение групп детей с РАС только с нейротипичными сверстниками. Для того, чтобы определить, насколько наблюдаемые изменения зрительного прайминга характерны только для РАС, необходимо провести дополнительное обследования детей с задержкой психического развития, имеющих схожее снижение интеллектуального и речевого развития. Группы детей с РАС также были выравнены не только по выраженности аутистических симптомов, но и по уровню невербального интеллекта и нарушений речевого развития. Это условие не позволяет установить зависимость зрительного прайминга от каждой из этих переменных. Решение этого вопроса требует дополнительных обследований детей
с одинаковой выраженностью РАС, но значительно отличающихся по уровню интеллектуального и речевого развития.

Литература

  1. Ильина М.Н. Психологическая оценка интеллекта у детей. СПб: Питер, 2009. 366 с.
  2. Нищева Н.В. Речевая карта ребенка. М.: Детство-Пресс, 2007. 265 с.
  3. Черенкова Л.В., Соколова Л.В. Возрастная динамика процессов зрительного прайминга // Российский физиологический журнал. 2021. Том 107. № 9. С. 1112–1125. DOI: 10.31857/S086981392109003X
  4. Черенкова Л.В., Соколова Л.В. Исследование процессов антиципации у детей дошкольного возраста с атипичным развитием // Психологический журнал. 2020. Том 41. № 3. С. 66–77. DOI: 10.31857/S020595920008518-5
  5. Черенкова Л.В., Соколова Л.В. Проявление прайминг-эффекта у детей дошкольного возраста с расстройством аутического спектра // Физиология человека. 2020. Том 46. № 2. С. 38–46. DOI: 10.31857/S0131164620010051
  6. Amso D., Haas S., Tenenbaum E. et al. Bottom-up attention orienting in young children with autism // Journal of Autism and Developmental Disorders. 2014. Vol. 44. № 2. P. 664–673. DOI: 10.1007/s10803-013-1925-5
  7. Carlson T., Tovar D.A., Alink A. et al. Representational dynamics of object vision: the first 1000 ms // Vision. 2013. Vol. 13. № 1. P. 1–19. DOI: 10.1167/13.10.1
  8. Haigh S.M. Variable sensory perception in autism // Europe Journal of Neuroscience. 2018. Vol. 47. № 6. P. 488–766. DOI:10.1111/ejn.1360
  9. Happe F., Frith U. The weak central coherence account: detail-focused cognitive style in autism spectrum disorders // Journal of Autism and Developmental Disorders. 2006. Vol. 36. № 1. P. 5–25. DOI: 10.1007/s10803-005-0039-0
  10. Janiszewski C., Wyer R.S. Content and process priming: A review // Journal of Consumer Psychology. 2014. Vol. 24. № 1. P. 96 – 118. DOI: 10.1016/j.jcps.2013.05.006
  11. Jurkat S., Gruber M., Kärtner J. The effect of verbal priming of visual attention styles in 4- to 9-year-old children // Cognition. 2021. Vol. 212. 3. P. 104–181. DOI: 10.1016/j.cognition.2021.104681
  12. Kimchi R. The perception of hierarchical structure: Oxford Handbook of Perceptual Organization / J. Wagemans (ed.). Oxford, UK: Oxford University Press, 2015. P. 129–149. DOI: 10.1177/1747021818766848
  13. Kristjansson A., Asgeirsson A.G. Attentional priming: Recent insights and current controversies // Current Opinion in Psychology. 2019. Vol. 29. № 1. P. 71–75. DOI: 10.1016/j.copsyc.2018.11.0133
  14. Macaluso E., Noppeney U., Talsma D. et al. The curious incident of attention in multisensory integration: Bottom-up vs. top-down // Multisensory Research. 2016. Vol. 29. № 6–7. P. 557–583. DOI: 10.1163/22134808-00002528l
  15. McLaughlin C.S., Grosman H., Grosman S. et al. Reduced engagement of visual attention in children with autism spectrum disorder // Autism. 2021. Vol. 25. № 2.
    P. 1362–1392. DOI: 10.1177/13623613211010072
  16. Miller J. Divided attention: Evidence for coactivation with redundant signals // Cognitive Psychology. 1982. Vol. 14. № 2. P. 247–279. DOI: 10.1016/0010-0285(82)90010-X
  17. Mo S., Liang L., Bardikoff N. et al. Shifting visual attention to social and non-social stimuli in Autism Spectrum Disorders // Research in Autism Spectrum Disorders. 2019. Vol. 65. № 1. P. 56–64. DOI: 10.1016/j.rasd.2019.05.006
  18. Pokhoday M., Shtyrov Y., Myachykov A. Effects of visual priming and event orientation on word order choice in Russian sentence production // Frontiers in Psychology. 2019. Vol. 10. Article 1661. DOI: 10.3389/fpsyg.2019.01661
  19. Robertson C.E., Baron-Cohen S. Sensory perception in autism // Nature Review Neuroscience. 2017. Vol. 18. № 11. P. 671–684. DOI: 10.1038/nrn.2017.112
  20. Roid G.H., Mille L.J., Pomplun M. et al. Leiter‑3: Leiter International Performance Scale: Manual / G. Roid (ed.). Wood Dale, Illinois: Stoelting Co., 2013. P. 5–307.
  21. Schopler E., Reichler R.J., DeVellis R.F. et al. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS) // Journal of Autism and Developmental Disorders. 1980. Vol. 10. № 1. P. 91–103. DOI: 10.1007/BF02408436
  22. Shomstein S., Kravit D.J., Behrmann M. Attentional control: temporal relationships within the fronto-parieatal network // Neuropsychoiogia. 2012. Vol. 50. № 6. P. 1202–1210. DOI: 10.1016/j.neuropsychologia.2012.02.009
  23. Soroor G., Mokhtari S. Pouretemad H. Priming global processing strategy improves the perceptual performance of children with Autism Spectrum Disorders // Journal of Autism and Developmental Disorders. 2022. Vol. 52. № 4. P. 1019–1029. DOI:10.1007/ s10803-021-05007-7
  24. Sutherland A., Crewther D.P. Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception // Brain. 2010. Vol. 133. № 4. P. 2089–2097. DOI: 10.1093/brain/awq122
  25. Van der Hallen R., Evers K., Boet B. et al. Visual search in ASD: Instructed versus spontaneous local and global processing // Journal of Autism and Developmental Disorders. 2016. Vol. 46. № 5. P. 3023–3036. DOI: 10.1007/s10803-016-2826-1
  26. Vanmarcke S., Noens I., Steyaert J. et al. Spatial frequency priming of scene perception in adolescents with and without ASD // Journal of Autism and Developmental Disorders. 2017. Vol. 47. № 2. P. 2023–2038 DOI:10.1007/s10803-017-3123-3
  27. Wilson C.E., Saldaña D. No evidence of atypical attentional disengagement in autism: A study across the spectrum // Autism: The International Journal of Research and Practice. 2019. Vol. 23. № 3. P. 677–688. DOI: 10.1177/2F1362361318768025

Информация об авторах

Черенкова Людмила Викторовна, доктор биологических наук, профессор кафедры высшей нервной деятельности и психофизиологии, Санкт-Петербургский государственный университет (ФГБОУ ВО СПбГУ), Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0002-9010-1010, e-mail: chluvic@mail.ru

Соколова Людмила Владимировна, профессор кафедры высшей нервной деятельности и психофизиологии, Санкт-Петербургский государственный университет (ФГБОУ ВО СПбГУ), Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0001-5284-3374, e-mail: lsokolova2021@mail.ru

Метрики

Просмотров

Всего: 867
В прошлом месяце: 15
В текущем месяце: 12

Скачиваний

Всего: 268
В прошлом месяце: 2
В текущем месяце: 4