System for modeling the spatial dynamics of the bacterial population under varying antimicrobial treatment regimes

6

Abstract

This work is devoted to the development and implementation of a model for the evolution of a bacterial population grown on a nutrient medium under conditions of controlled biomass inhibition by an antimicrobial agent. To formalize the model a continuous deterministic approach is used. The mathematical model is described by an initial boundary value problem for a system of reaction-diffusion equations defining the spatio-temporal distributions of nutrient substrate and biomass, taking into account integration with a pharmacokinetic model for a single antimicrobial treatment. The model was implemented by the finite element method using the finite element analysis system – COMSOL Multiphysics platform. A series of computational experiments were performed to establish numerical patterns of changes in bacterial mass concentration with variation in antimicrobial dose. A discussion of the potential application of this approach to investigate the issue of bacterial resistance to antibiotics is presented.

General Information

Keywords: reaction-diffusion system, bacterial growth model, nutrient substrate, finite element method, logistic growth model, pharmacokinetics, bacterial resistance

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150102

Funding. The study has been supported by the Kazan Federal University (the Strategic Academic Leadership Program “PRIORITY-2030”)

Acknowledgements. The author thanks his scientific supervisor, Professor A.G. Maslovskaya, for assistance in preparing the publication.

Received: 05.02.2025

Accepted:

For citation: Shuai y. System for modeling the spatial dynamics of the bacterial population under varying antimicrobial treatment regimes. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2025. Vol. 15, no. 1, pp. 19–34. DOI: 10.17759/mda.2025150102. (In Russ., аbstr. in Engl.)

References

  1. Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., Salamat M.K. Antibiotic resistance: a rundown of a global crisis // Infection and drug resistance. 2018. Vol. 10. P. 1645–1658. DOI: 10.2147/IDR.S173867
  2. Frieri M., Kumar K., Boutin A., Antibiotic resistance // Journal of infection and public health. 2017. Vol. 10. № 4. P. 369–378. DOI:10.1016/j.jiph.2016.08.007
  3. Golding I., Kozlovsky Y., Cohen I., Ben-Jacob E. Studies of bacterial branching growth using reaction–diffusion models for colonial development // Physica A: Statistical Mechanics and its Applications. 1998. Vol. 260. № 3–4. P. 510–554. DOI:10.1016/S0378-4371(98)00345-8
  4. Eberl H.J., Parker D.F., van Loosdrecht M.C.M. A new deterministic spatio‐temporal continuum model for biofilm development // Computational and Mathematical Methods in Medicine. 2001. Vol. 3. № 3. P. 161-175. DOI:10.1080/10273660108833072
  5. Mimura M., Sakaguchi H., Matsushita M. Reaction-diffusion modelling of bacterial colony patterns // Physica A: Statistical Mechanics and its Applications. 2000. Vol. 282. № 1–2. P. 283–303. DOI:10.1016/S0378-4371(00)00085-6
  6. Kawasaki K., Mochizuki A., Matsushita M., Umeda T., Shigesada N. Modeling spatio-temporal patterns generated bybacillus subtilis // Journal of theoretical biology. 1997. Vol. 188. № 2. P. 177–185. DOI:10.1006/jtbi.1997.0462
  7. Shevkun I.A., Maslovskaya A.G. Gibridnyj podkhod k modelirovaniyu i ocenke strukturnykh osobennostej patternov kul'tivirovannykh bakterij // Matematicheskoe modelirovanie. 2024. T. 36. № 6. S. 59–73. DOI:10.20948/mm-2024-06-04
  8. Jornet M. Modeling of Allee effect in biofilm formation via the stochastic bistable Allen–Cahn partial differential equation // Stochastic Analysis and Applications. 2020. Vol. 39. № 1. P. 22–32. DOI:10.1080/07362994.2020.1777163
  9. Tijani Y.O., Appadu A.R. Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation // Demonstratio Mathematica. 2022. Vol. 55. № 1. P. 40–60. DOI:10.1515/dema-2022-0006
  10. Shuai Y., Maslovskaya A. Computer-assisted approach to study of bacterial communication for Landau-based model of population growth // 2024 Applied Mathematics, Computational Science and Mechanics: Current Problems (AMCSM), Voronezh, Russian Federation. 2024. P. 1–7. DOI:10.1109/AMCSM59829.2023.10525808
  11. Mueller M., de la Pena A., Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC // Antimicrobial agents and chemotherapy. 2004. Vol. 48. № 2. P. 369–377. DOI:10.1128/aac.48.2.369-377.2004
  12. Nielsen E.I., Friberg L.E. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs // Pharmacological reviews. 2013. Vol. 65. № 3. P. 1053–1090. DOI: 10.1124/pr.111.005769
  13. Sy S.K., Zhuang L., Derendorf H. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization // Expert opinion on drug metabolism & toxicology. 2016. Vol. 12. № 1. P.93–114. DOI:10.1517/17425255.2016.1123250
  14. Shuai Y., Maslovskaya A., Kuttler C. 2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth // Far Eastern Mathematical Journal. 2022. Vol. 22. № 2. P. 232-237. DOI:10.47910/FEMJ202231
  15. Shuai Y., Maslovskaya A.G., Kuttler C. Modeling of bacterial communication in the extended range of population dynamics // Mathematical Biology and Bioinformatics. 2023. Vol. 18. № 1. P. 89–104.DOI:10.17537/2023.18.89
  16. Martínez-Calvo A., Bhattacharjee T., Bay R.K., Luu H.N., Hancock A.M., Wingreen N.S., Datta S.S. Morphological instability and roughening of growing 3D bacterial colonies // Proceedings of the National Academy of Sciences. 2022. Vol. 119. № 43. P. e2208019119. DOI:10.1073/pnas.2208019119
  17. Firsov A.A., Vostrov S.N., Shevchenko A.A., Cornaglia G. Parameters of bacterial killing and regrowth kinetics and antimicrobial effect examined in terms of area under the concentration-time curve relationships: action of ciprofloxacin against Escherichia coli in an in vitro dynamic model // Antimicrobial agents and chemotherapy. 1997. Vol. 41. № 6. P. 1281–1287. DOI:10.1128/aac.41.6.1281
  18. Roberts P.A., Huebinger R.M., Keen E., Krachler A.M., Jabbari S. Mathematical model predicts anti-adhesion-antibiotic-debridement combination therapies can clear an antibiotic resistant infection // PLoS Comput Biol. 2019. Vol. 15. № 7. P. e1007211. DOI: 10.1371/journal.pcbi.1007211

Information About the Authors

yixuan Shuai, PhD student, Institute of computational mathematics and information technologies, Kazan (Volga region) Federal University, Kazan, Russian Federation, ORCID: https://orcid.org/0000-0002-3465-7030, e-mail: shuaiyixuan@qq.com

Metrics

 Web Views

Whole time: 21
Previous month: 0
Current month: 21

 PDF Downloads

Whole time: 6
Previous month: 0
Current month: 6

 Total

Whole time: 27
Previous month: 0
Current month: 27