Computational Experiment in Teaching Higher Mathematics by the Example of Number Theory

50

Abstract

The article continues the cycle of methodological developments of the authors [1] – [17]. It discusses some problems related to ways to improve the culture of mathematical thinking of mathematics students. The authors rely on the experience of working at the Faculty of Information Technology of MSUPE.

General Information

Keywords: higher education, methods of teaching higher mathematics, computer calculations, computational experiment, theory of numbers, prime numbers, twin numbers, fours of prime numbers, Diophantine equations, irrational numbers

Journal rubric: Method of Teaching

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2024140111

Received: 10.01.2024

Accepted:

For citation: Kulanin Y.D., Stepanov M.E. Computational Experiment in Teaching Higher Mathematics by the Example of Number Theory. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 1, pp. 170–195. DOI: 10.17759/mda.2024140111. (In Russ., аbstr. in Engl.)

References

  1. Stepanov M. E. The image of a force field as a heuristic model in mathematics.    Modeling and data analysis. Proceedings of the Faculty of Information Technologies of MGPPU. – Issue 3., 2007.
  2. Stepanov M. E. Klein's Erlangen program and triangle geometry. Modeling and data analysis. Proceedings of the Faculty of Information Technologies of MGPPU. - 2015. No. 1. pp.100-135.
  3. Stepanov M. E. Klein's Erlangen program and the geometry of triangles (Part two). Modeling and data analysis. Proceedings of the Faculty of Information Technologies of MGPPU. – 2016. No. 1. pp.60-115.
  4. Stepanov M. E. Klein's Erlangen program and triangle geometry Modeling and data analysis. Mathematical education. 2017. No.3(83). pp.28-42.
  5. Stepanov M. E. Computer technologies as a means of introducing the student to mathematical reality. Modeling and data analysis. Scientific journal. – Issue 1, 2018.
  6. Kulanin E.D., Nurkaeva I.M. On two geometric problems on the extremum. Math at school. 2019. No. 4. pp. 35-40.
  7. Kulanin E.D., Nurkaeva I.M. Once again about the Mavlo problem. Mathematics in school. 2020. No. 2. pp. 76-79.
  8. Kulanin E.D., Stepanov M. E., Nurkaeva I.M. Propaedeutics of solving extreme problems in the school course of mathematics. Modeling and analysis of data. 2019. No. 4. pp.127-144.
  9. Kulanin E. D., Nguyen Wu Quang, Stepanov M. E. Tangible objectivity with computer support. Modeling and data analysis. Scientific journal. 2019. No. 4. pp.145-156.
  10. Kulanin E.D., Stepanov M. E., Nurkaeva I.M. The role of imaginative thinking in scientific thinking. Modeling and data analysis. 2020. Vol.10. No.2 Pp.110 - 128. 
  11. Kulanin E.D., Stepanov M. E., Nurkaeva I.M. On various approaches to solving extreme tasks. Modeling and data analysis. 2020. Vol.11. No. 1. P.40 - 60.
  12. Lungu K.N., Norin V.P., Pismennyi D.T., Shevchenko Yu.A., Kulanin E.D. Collection of problems in higher mathematics with control papers. Moscow, 2013. Volume 2 (8th edition).
  13. Stepanov M.E. From experience in the field of typhlopedagogics. Modeling and data analysis. 2017. No. 1. pp.42-53.
  14. Stepanov M.E. Some questions of the methodology of teaching higher mathematics. Modeling and data analysis. 2017. No. 1. pp.54-94.
  15. Kulanin E.D., Stepanov M. E. From the experience of working in the remote mode Learning Modeling and data analysis. 2022. Vol.12. No.3. pp.58-70.
  16. Kulanin E.D., Stepanov M. E. Comprehensive consideration of mathematical concepts as a methodological technique. Modeling and data analysis. 2022. Vol.12. No.4. pp.67-84.
  17. Kulanin E.D., Stepanov M. E. On visualization of solutions to some extreme problems. Modeling and data analysis. 2022. Vol.12. No. 4. pp.94 - 104.
  18. Arnold V. I. About teaching mathematics. SUCCESSES OF MATHEMATICAL SCIENCES, vol. 53, issue 1 (319).
  19. Hardy G. Twelve lectures on Ramanujan. M., Institute of Computer Research. 2002.
  20. Prahar K. Distribution of primes. M., Mir, 1967.
  21. Serpinsky V. What we know and what we don't know about primes. M. – L. State Publishing House of Physics. – mate. literatures. 1963.
  22. ru.wikipedia.org › The numbers are twins.
  23. Zenkin V. I. Distribution of prime numbers: Elementary methods. Kaliningrad, 2008.
  24. Depman. I. Perfect numbers. Kvant, 1991, No. 5.

Information About the Authors

Yevgeny D. Kulanin, PhD in Physics and Matematics, Professor, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0001-6093-7012, e-mail: lucas03@mail.ru

Mikhail E. Stepanov, PhD in Education, Associate Professor, Department of Applied Mathematics, Faculty of Information Technologies, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0003-4803-8211, e-mail: mestepanov@yandex.ru

Metrics

Views

Total: 129
Previous month: 7
Current month: 5

Downloads

Total: 50
Previous month: 1
Current month: 2