Modelling and Data Analysis
2024. Vol. 14, no. 1, 121–134
doi:10.17759/mda.2024140108
ISSN: 2219-3758 / 2311-9454 (online)
Solving an Optimization Problem for Estimating Fully connected Linear Regression Models
Abstract
This article is devoted to the problem of estimating fully connected linear regression models using the maximum likelihood method. Previously, a special numerical method was developed for this purpose, based on solving a nonlinear system using the method of simple iterations. At the same time, the issues of choosing initial approximations and fulfilling sufficient conditions for convergence were not studied. This article proposes a new method for solving the optimization problem of estimating fully connected regressions, similar to the method of estimating orthogonal regressions. It has been proven that, with equal error variances of interconnected variables, estimates of b-parameters of fully connected regression are equal to the components of the eigenvector corresponding to the smallest eigenvalue of the inverse covariance matrix. And if the ratios of the error variances of the variables are equal to the ratios of the variances of the variables, then the b-parameter estimates are equal to the components of the eigenvector corresponding to the smallest eigenvalue of the inverse correlation matrix, multiplied by the specific ratios of the standard deviations of the variables. A numerical experiment was carried out to confirm the correctness of the developed mathematical apparatus. The proposed method for solving the optimization problem of estimating fully connected regressions can be effectively used when solving problems of constructing multiple fully connected linear regressions.
General Information
Keywords: fully connected linear regression model, maximum likelihood estimation, numerical method, optimization, orthogonal regression, correlation matrix, eigenvector, eigenvalue
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2024140108
Received: 15.01.2024
Accepted:
For citation: Bazilevskiy M.P. Solving an Optimization Problem for Estimating Fully connected Linear Regression Models. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 1, pp. 121–134. DOI: 10.17759/mda.2024140108. (In Russ., аbstr. in Engl.)
Information About the Authors
Metrics
Views
Total: 76
Previous month: 9
Current month: 10
Downloads
Total: 43
Previous month: 5
Current month: 4