Investment Portfolio Optimization by Binary Bee Swarm Method

21

Abstract

The problem of forming a stock portfolio is considered as a binary optimization problem. The solution is formed using the developed modification of the bee swarm method, supplemented by a binarization procedure using various transition functions. The efficiency of the proposed method is studied using model examples and the applied problem of maximizing portfolio profitability is solved taking into account constraints on the funds used and the risk value.

General Information

Keywords: binary optimization, metaheuristic algorithms, bee swarm method, transition functions, stock portfolio

Journal rubric: Optimization Methods

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2024140305

Received: 13.08.2024

Accepted:

For citation: Panteleev A.V., Milyutina S.A. Investment Portfolio Optimization by Binary Bee Swarm Method. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 3, pp. 87–104. DOI: 10.17759/mda.2024140305. (In Russ., аbstr. in Engl.)

References

  1. Badalova A.G., Panteleev A.V. Promyshlennyj risk-menedzhment. : Dobroe slovo, 2018. (In Russ.).
  2. Badalova A.G., Panteleev A.V. Upravlenie riskami deyatel'nosti predpriyatiya. : Vuzovskaya kniga, 2017.(In Russ.).
  3. Panteleev A.V., Skavinskaya D.V. Metaevristicheskie algoritmy global'noj optimizacii. M.: Vuzovskaya kniga, 2019. (In Russ.).
  4. Macedo M. et al. Overview on binary optimization using swarm-inspired algorithms // IEEE Access. 2021. Vol. 9. P. 149814–149858.
  5. Lemus-Romani J. et al. Binarization of Metaheuristics: Is the Transfer Function Really Important? //Biomimetics. 2023. Vol. 8. No. 5. 400.
  6. Crawford B. et al. Q-learnheuristics: Towards data-driven balanced metaheuristics //Mathematics. 2021. Vol. 9. No. 16. 1839.
  7. Wolpert D.H., Macready W.G. No free lunch theorems for optimization // IEEE Transactions on Evolutionary Computation. 1997. Vol. 1.  No.1.  P. 67–82.
  8. Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm //Applied soft computing. 2008. Vol. 8. No.1. P. 687–697.
  9. Nouioua M., Li Z., Jiang S. New binary artificial bee colony for the 0-1 Knapsack problem //Advances in Swarm Intelligence: 9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part I 9. Springer International Publishing, 2018.
  10. Pampará G., Engelbrecht A.P. Binary artificial bee colony optimization // 2011 IEEE Symposium on Swarm Intelligence. IEEE, 2011. P. 1–8.

Information About the Authors

Andrey V. Panteleev, Doctor of Physics and Matematics, Professor, Head of the Department of Mathematical Cybernetics, Institute of Information Technologies and Applied Mathematics, Moscow Aviation Institute (National Research University), Moscow, Russia, ORCID: https://orcid.org/0000-0003-2493-3617, e-mail: avpanteleev@inbox.ru

Sofia A. Milyutina, Bachelor’s Degree Graduate of the Institute “Computer Science and Applied Mathematics”, Moscow Aviation Institute (National Research University) (MAI), Moscow, Russia, ORCID: https://orcid.org/0009-0000-5267-2157, e-mail: msofa02@mail.ru

Metrics

Views

Total: 30
Previous month: 1
Current month: 3

Downloads

Total: 21
Previous month: 1
Current month: 3