Ordered Partial Correlation Networks in Psychological Research

264

Abstract

Network modeling, which has emerged in recent years, can be successfully applied to the consideration of relationships between measurable psychological variables. In this context, psychological variables are understood as directly affecting each other, and not as a consequence of a latent construct. The article describes regularization methods that can be used to effectively assess the sparse and interpretable network structure based on partial correlations of psychological indicators. An overview of the glasso regularization procedure using EBIC model selection for evaluating an ordered sparse network of partial correlations is presented. The issues of performing this analysis in R in the presence of normal and non-normal data distribution are considered, taking into account the influence of the hyperparameter, which is manually set by the researcher. The considered approach is also interesting as a way to visualize possible causal connections between variables. This review bridges the gap related to the lack of an accessible description in Russian of this approach, which is still uncommon in Russia and at the same time promising.

General Information

Keywords: correlation analysis, partial correlation networks, regularization, network modeling in psychology, language R

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2021110202

For citation: Artemenkov S.L. Ordered Partial Correlation Networks in Psychological Research. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2021. Vol. 11, no. 2, pp. 31–50. DOI: 10.17759/mda.2021110202. (In Russ., аbstr. in Engl.)

References

  1. Aleskerov F.T., Khabina E.L., Shvarts D.A. Binarnyye otnosheniya, grafy i kollektivnyye resh- eniya. M.: FIZMATLIT, 2017. 344 s.
  2. Artemenkov S.L. Setevoye modelirovaniye psikhologicheskikh konstruktov // Modelirovaniye i analiz dannykh. 2017. № 1. S. 9–28.
  3. Artemenkov S.L. Initsionno-semanticheskaya model’ divergentnoy kreativnosti [Elektronnyy resurs] // Psikhologicheskaya nauka i obrazovaniye psyedu.ru. 2012. № 3. S. 1–15. URL: http:// psyjournals.ru/psyedu_ru/2012/n3/55540.shtml.
  4. Zhukova E.S., Artemenkov S.L., Bogoyavlenskaya D.B. K voprosu o sootnoshenii odarennosti i osoznannoy samoregulyatsii. Lichnostnyye i regulyatornyye resursy dostizheniya obrazova- tel’nykh i professional’nykh tseley v epokhu tsifrovizatsii. Moskva: Znaniye-M, 2020. S. 104– 115. DOI: 10.38006/907345–50–8.2020.104.115.
  5. Zhukova E.S., Artemenkov S.L., Bogoyavlenskaya D.B. Issledovaniye intellektual’noy aktivnos- ti v mladshem shkol’nom i podrostkovom vozraste / Modelirovaniye i analiz dannykh. 2019. № 1. S. 11–29.
  6. Mitina O.V. Metody issledovaniya kauzal’nykh svyazey // Eksperimental’naya psikhologiya v Rossii: traditsii i perspektivy. M.: «Institut psikhologii RAN», 2010. S. 139–143.
  7. Shishlyannikova L.M. Primeneniye korrelyatsionnogo analiza v psikhologii // Psikhologich- eskaya nauka i obrazovaniye. 2009. Tom 14. № 1. S. 98–107.
  8. Abacioglu C.S., Isvoranu A.M., Verkuyten M., Thijs J. & Epskamp S. Exploring teachers’ influ- ence on student motivation in multicultural classrooms: A comparative network analysis. Journal of School Psychology, 2019. 74, 90–105. https://doi.org/10.1016/j.jsp.2019.02.003.
  9. Agresti A. Categorical data analysis. New York, NY: Wiley, Inc. 1990.
  10. Berg J.W., Smid W., Kossakowski J.J., Beek D.V., Borsboom D., Janssen E., & Gijs L. The Ap- plication of Network Analysis to Dynamic Risk Factors in Adult Male Sex Offenders. Clinical Psychological Science, 2020. 8, 539–554.
  11. Bogoyavlenskaya D., Joukova E., Artemenkov S. Longitudinal Study Of The Creative Abilities // The European Proceedings of Social & Behavioural Sciences (EpSBS), 2018. 14: 125–131. doi: https://dx.doi.org/10.15405/epsbs.2018.11.02.14.
  12. Borsboom D. A network theory of mental disorders. World Psychiatry, 2017. 16(1), 5–13.
  13. Borsboom D., & Cramer A.O.J. Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 2013. 9, 91–121.
  14. Borsboom D., Cramer A., & Kalis A. Brain disorders? Not really: Why network structures block reductionism in psychopathology research. Behavioral and Brain Sciences, 2019. 42, 1–54. doi:10.1017/S0140525X17002266
  15. Chen J., & Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 2008. 95, 759–771.
  16. Costantini G., Epskamp S., Borsboom D., Perugini M., Mõttus R., Waldorp L.J., & Cram- er A.O.J. State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 2015. 54, 13–29.
  17. Costantini G., Richetin J., Emanuele P., Casini E., Epskamp S. & Perugini M. Stability and var- iability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 2019. 136, 68–78.
  18. de Ron J, Fried E.I., Epskamp S. Psychological networks in clinical populations: investigating the consequences of Berkson’s bias. Psychological Medicine, 2019. 1–9. https://doi.org/10.1017/ S0033291719003209
  19. Drton M., & Perlman M.D. Model selection for gaussian concentration graphs. Biometrika, 2004. 91, 591–602.
  20. Epskamp S., Borsboom D., Fried E.I. Estimating psychological networks and their accuracy: a tutorial paper. Behavior Research Methods. 2018. 50, 195–212.
  21. Epskamp S., Fried E.I. A tutorial on regularized partial correlation networks. Psychological Methods, 2018. 23(4), 617–634. https://doi.org/10.1037/met0000167.
  22. Epskamp S., Rhemtula M., & Borsboom D. Generalized network psychometrics: Combining net- work and latent variable models. Psychometrika, 2017. 82, 904–927. http://dx.doi.org/10.1007/ s11336–017–9557-x
  23. Epskamp S., van Borkulo C.D., van der Veen D.C., Servaas M.N., Isvoranu A.M., Riese H. & Cramer A.O.J. Personalized Network Modeling in Psychopathology: The Importance of Contem- poraneous and Temporal Connections. Clinical Psychological Science, 2018. 6(3), 416–427.
  24. Foygel R., & Drton M. Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 2010. 23, 2020–2028.
  25. Friedman J.H., Hastie T., & Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2008. 9, 432–441.
  26. Golino H.F., & Epskamp S. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PloS One, 2017. 12, e0174035.
  27. Hastie T., Tibshirani R., & Wainwright M. Statistical learning with sparsity: The lasso and gener- alizations. Boca Raton, FL: CRC Press. 2015.
  28. Isvoranu A-M., Guloksuz S., Epskamp S., van Os J., Borsboom D., GROUP Investigators. Toward incorporating genetic risk scores into symptom networks of psychosis. Psychological Medicine, 2020. 50, 636–643. https://doi.org/10.1017/S003329171900045X
  29. Kan K-J., de Jonge H., van der Maas H.L.J., Levine S.Z., & Epskamp S. How to Compare Psy- chometric Factor and Network Models. Journal of Intelligence, 2020. 8(4), 35.
  30. Koller D., & Friedman N. Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press. 2009.
  31. Kossakowski J.J., Epskamp S., Kieffer J.M., van Borkulo C.D., Rhemtulla M., & Borsboom D. The application of a network approach to health-related quality of life (HRQoL): Introducing a new method for assessing HRQoL in healthy adults and cancer patient. Quality of Life Research, 2015. 25, 781–792.
  32. Lauritzen S.L. Graphical models. Oxford, UK: Clarendon Press. 1996.
  33. Liu H., Lafferty J.D., & Wasserman L. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. The Journal of Machine Learning Research, 2009. 10, 2295–2328.
  34. Meinshausen N., & Bühlmann P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 2006. 34, 1436–1462.
  35. Muthén B. A general structural equation model with dichotomous, ordered categorical, and con- tinuous latent variable indicators. Psychometrika, 1984. 49, 115–132.
  36. Olsson U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometri- ka, 1979. 44, 443–460.
  37. Olsson U., Drasgow F., & Dorans N.J. The polyserial correlation coefficient. Psychometrika, 1982. 47, 337–347.
  38. Oreel T.H., Borsboom D., Epskamp S., Hartog I.D., Netjes J.E., Niewekerk P.T., Henriques J.P.S., Scherer-Rath M., Van Laarhoven H.W.M. & Sprangers M.A.G. The dynamics in health-related quality of life of patients with stable coronary artery disease were revealed: a network analysis. Journal of clinical epidemiology. 2019. 107, 116–123.
  39. Pearl J. Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press. 2000.
  40. Pedersen T.L. ggraph: An Implementation of grammar of graphics for graphs and networks (R package version 1.0.0). 2017. Retrieved from https://CRAN.R-project.org/package&ggraph
  41. Pourahmadi M. Covariance estimation: The glm and regularization perspectives. Statistical Sci- ence, 2011. 26, 369–387.
  42. Rosseel Y. lavaan: An R package for structural equation modeling. Journal of Statistical Software, 2012. 48(2), 1–36.
  43. Schmittmann V.D., Cramer A.O.J., Waldorp L.J., Epskamp S., Kievit R.A., & Borsboom D. Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 2013. 31, 43–53.
  44. Soutter A.R.B., Bates T.C., Mõttus R. Big Five and HEXACO Personality Traits, Proenvironmen- tal Attitudes, and Behaviors: A Meta-Analysis. Perspect Psychol Sci. 2020. 15(4), 913–941. doi: 10.1177/1745691620903019.
  45. Stevens S.S. On the theory of scales of measurement. Science, New Series, 1946. 103, 677–680.
  46. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 1996. 58, 267–288.
  47. van Borkulo C.D., & Epskamp S. IsingFit: Fitting Ising models using the elasso method. R pack- age version 0.2.0. 2014.
  48. Wagenmakers E.-J. A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 2007. 14, 779–804.
  49. Wasserman S., & Faust K. Social network analysis: Methods and applications. New York, NY: Cambridge University Press. 1994.
  50. Zhao P., & Yu B. On model selection consistency of lasso. The Journal of Machine Learning Research, 2006. 7, 2541–2563.
  51. Zhao T., Li X., Liu H., Roeder K., Lafferty J., & Wasserman L. huge: High-dimensional undirect- ed graph estimation (R package version 1.2.7). 2015. Retrieved from https://CRAN.R-project.org/ package&huge

Information About the Authors

Sergei L. Artemenkov, PhD in Engineering, Professor, Head of the Department of Applied Informatics and Multimedia Technologies, Head of the Center of Information Technologies for Psychological Research of the Faculty of Information Technologies, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0002-1619-2209, e-mail: slart@inbox.ru

Metrics

Views

Total: 461
Previous month: 13
Current month: 8

Downloads

Total: 264
Previous month: 8
Current month: 6