Аналитический потенциал платформы дистанционного обучения ИнфоДа Moodle МПГУ

70

Аннотация

В статье приведены данные, раскрывающие характер развития дистанционного обучения в Московском педагогическом государственном университете. Показано, что по мере распространения дистанционных образовательных технологий накапливается все больше данных, которые с успехом могут быть использованы для анализа и проектирования образовательных результатов. Описаны программные решения и подходы по развитию функционала платформы Moodle с целью прогнозирования успеваемости студентов.

Общая информация

Ключевые слова: анализ данных, образовательная платформа, дистанционное обучение, аналитика данных, искусственный интеллект

Рубрика издания: Моделирование и анализ данных для цифрового образования

Тип материала: материалы конференции

Для цитаты: Демина С.А., Постырнак В.И., Михайлова М.В. Аналитический потенциал платформы дистанционного обучения ИнфоДа Moodle МПГУ // Цифровая гуманитаристика и технологии в образовании (DHTE 2023): сб. статей IV Международной научно-практической конференции. 16–17 ноября 2023 г. | Digital Humanities and Technology in Education (DHTE 2023): Сollection of Articles of the IV International Scientific and Practical Conference. November 16–17, 2023. / Под ред. В.В. Рубцова, М.Г. Сороковой, Н.П. Радчиковой. – Москва : ФГБОУ ВО МГППУ, 2023. С. 533–548.

Полный текст

Введение

Анализ – преобразование массива данных в конкурентоспособные аналитические выводы, оказывающие влияние на деловые решения и последующие действия [1, с. 114]. Такое определение анализу дает в своей книге «Аналитическая культура» американский учёный и статистик Уильям Эдвардс Деминг. С ним нельзя не согласиться, так как сами по себе статистические данные не позволяют принимать адекватные управленческие решения. Так, например, анализ статистических данных по успеваемости в системе дистанционного обучения предполагает не только оценку результатов обучения, но и оценку качества самих средств контроля знаний обучающихся. Тесты могут быть слишком простыми или наоборот слишком сложными для программы обучения, или тесты могут быть с маленькой базой вопросов, в результате чего ответы на вопросы становятся известны учебной группе заранее. Только в комплексе с такими показателями как распределение оценок, объем базы тестовых заданий, уровень сложности вопросов и другие показатели качества оценки знаний, анализ успеваемости позволит сделать адекватные аналитические выводы.

По мере распространения дистанционных образовательных технологий, развития соответствующих образовательных платформ и навыков работы с ними, накапливается все больше данных, которые с успехом могут быть использованы для анализа и проектирования образовательных результатов [2, 3, 5, 6]. В свою очередь, система управления обучением Moodle предоставляет достаточно широкие возможности для их анализа. Поскольку структура среды является гибкой, ее можно оптимизировать и расширять, разрабатывая новые модули для анализа учебной среды, что и является весьма актуальной задачей.

Несмотря на широкий функционал платформы LMS Moodle, зачастую стандартных отчетов системы оказывается недостаточно для того, чтобы сделать практически полезные выводы, а главное – представить данные в виде конкретных показателей. Кроме того, в базовой версии системы отсутствует возможность скачать многие из отчетов, указать интересующий диапазон дат для ряда отчетов. Возможность предусмотрена только в отчете о деятельности, в остальных типах отчетов можно выбирать только последний период, за который строится отчет: последний день, последняя неделя, последний месяц и т. п. [7], поэтому желательно, чтобы отчеты в системе могли быть сформированы для разных категорий пользователей в зависимости от определенных показателей оценки.

Методы

Для решения поставленных задач использовались статистика за 2020-2022 гг. с портала дистанционного обучения ИнфоДа Moodle МПГУ, методы многомерного анализа, анализ научно-методической литературы, системный подход.

Результаты

Обращаясь к опыту Московского педагогического государственного университета, можно заметить, что после локдауна 2020 года в динамике дистанционного обучения университета произошел резкий скачок. На рис. 1 и 2 приведены данные по использованию платформы дистанционного обучения ИнфоДа Moodle МПГУ за 2020-2021 учебный год. За этот период было проведено более 21565 видеоконференций, а число пользователей на портале дистанционного обучения ИнфоДа МПГУ увеличилось почти в три раза – с 13950 до 30000 пользователей (рис. 1).

Изображение выглядит как снимок экрана, линия

Автоматически созданное описание

Рис. 1. Изменение численности пользователей на портале ИнфоДа Moodle МПГУ за 2020-2021 учебный год

Число курсов на портале дистанционного обучения ИнфоДа МПГУ с 2020 по 2021 гг. увеличилось почти в два раза – с 8400 до 12500 (рис. 2).

Изображение выглядит как музыка

Автоматически созданное описание

Рис. 2. Динамика числа курсов на портале ИнфоДа Moodle МПГУ за 2020-2021 учебный год

При этом необходимо заметить, что курсов на платформе стало не только больше, но и размещаемый на платформе контент стал гораздо разнообразнее. В 2020 году основная часть курсов на платформе представляла из себя скорее электронные образовательные ресурсы, так как они включали в основном статичные файлы и задания для проверки преподавателем. При этом на один размещенный в системе файл приходилось в среднем только 0,2 теста. Остальная часть курсов состояла из пояснений, ссылок, форумов, страниц с текстом, папок с файлами и элементов видеоконференций BigBlueButton (табл.).

Таблица Динамика числа ресурсов и элементов курсов на платформе ИнфоДа Moodle МПГУ
за 2020-2022 гг.

Инструмент разработки курса

2020 г. (штук)

2022 г. (штук)

Прирост (%)

Рабочая тетрадь

633

2772

338%

Обратная связь

2964

11088

274%

Сертификат

12

44

267%

Папка

7952

28583

259%

Видеоконференция BigBlueButton

6782

22161

227%

Тест

12000

34010

183%

Файл

47729

135121

183%

Форум

19934

55976

181%

Задание

49770

129974

161%

Гиперссылка

21525

55510

158%

Пояснение

24987

57050

128%

Книга

778

1734

123%

HotPot

143

282

97%

Внешний инструмент

223

420

88%

Интерактивный контент

2393

4404

84%

Страница

18322

32723

79%

Семинар

916

1401

53%

Лекция

4205

5873

40%

Пакет SCORM

401

498

24%

Чат

669

829

24%

База данных

293

349

19%

Вики

244

280

15%

Опрос

980

1115

14%

Глоссарий

1424

1587

11%

Анкета

104

105

1%

 

Анализируя динамику изменения числа ресурсов и элементов курсов на платформе ИнфоДа Moodle МПГУ за 2020-2022 гг., можно сделать ряд выводов:

  1. преподаватели стали активнее использовать в своей работе элементы обратной связи, позволяющие отслеживать ход выполнения задания и собирать данные от обучающихся, используя различные типы вопросов. Об этом говорит увеличение числа элементов «Рабочая тетрадь» на 338%, увеличение числа элементов «Обратная связь» на 274%, увеличение числа элементов «Тест» на 183%;
  2. в 3,6 раза увеличилось число сертификатов, присваиваемых по результатам обучения (рост числа элементов «Сертификат» на 267%);
  3. преподаватели стали чаще предлагать учебный материал в курсах в виде папок (рост числа ресурсов «Папка» на 259%);
  4. преподаватели стали чаще использовать для проведения вебинаров интегрированную в платформу дистанционного обучения систему видеоконференцсвязи BigBlueButton (рост числа соответствующих элементов в курсах 227%).

Анализируя полученные данные, также необходимо отметить, что платформа дистанционного обучения в университет по-прежнему продолжает использоваться в основном для размещения статичного материала и контроля знаний. Это не говорит о качестве обучения, так как в университете используется исключительно смешанная модель дистанционного обучения, но свидетельствует о том, что возможности системы используются не в полной мере. Об этом говорит также и тот факт, что рост числа таких элементов для контроля знаний как «Тест», «Файл», «Задание» происходил активнее, чем рост числа самих курсов в системе. Если за исследуемый период число курсов в системе увеличилось почти в два раза, то число перечисленных элементов увеличилось почти в три раза, а значит среднестатистический курс стал больше наполнен файлами, зданиями и тестами. При этом за это время так и не удалось преодолеть порог в 0,2 теста на один файл (динамика увеличения файлов и тестов одинаковая – 183%).

Среди негативных факторов стоит отметить снижение интерактивной составляющей, так как интерактивный контент увеличивался медленнее самих курсов в системе: «Интерактивный контент» – рост 84%; «Семинар» – 53%; «Лекция» – 40%; Пакет SCORM – 24%. Наименьшим спросом у преподавателей пользуются такие элементы разработки контента как «Чат», «База данных», «Вики», «Опрос», «Глоссарий» и «Анкета».

Очевидно, что полученных данных недостаточно для того, чтобы сделать окончательные выводы о причинах таких предпочтений преподавателей в отношении инструментария для разработки курсов. Выбор преподавателя может быть обусловлен, как недостатком у преподавателей навыков разработки цифрового образовательного контента и мотивации для его разработки, так и спецификой обучения по программам педагогического вуза. Тем не менее оценка качества разработки контента, в том числе степени его интерактивности, остается очень важным этапом планирования системы дистанционного обучения, так как именно интерактивность курсов позволяет вовлекать и задавать ритм обучения, собственно превращает электронный образовательный ресурс в сам электронный курс.

LMS Moodle позволяет собирать и обрабатывать достаточно большое число данных об онлайн- и офлайн-обучении в автоматическом режиме, осуществлять функции сбора и хранения информации о посещении пользователями дистанционных учебных курсов, она обладает недостаточно развитым функционалом для анализа хода учебного процесса. Если курс, например, не поддерживает интерес обучающегося в течение всего периода обучения, то интерес к его материалам от темы к теме начинает снижаться. Это видно на стандартных диаграммах, отражающих число обращений к курсу в целом и к отдельным его элементам [7].

Однако базовая версия LMS Moodle не содержит отчетов, демонстрирующих совместно действия пользователя на курсе и получаемые им оценки, что не позволяет быстро выявлять связи между поведением студента на курсе и его успеваемостью [3]. Например, информация по активностям студентов представлена в разделе «Отчеты», а информация по оценкам собирается в отдельном отчете «Отчет по оценкам» в разделе «Оценки». При этом в Moodle оценки в журнале оценок далеко не всегда являются оценками за дисциплину или программу в целом, что не позволяет автоматически вывести такой важный показатель эффективности обучения как доля аттестованных участников обучения от их общего числа. Термин «окончание курса», принятый как показатель завершения обучения в учебных заведениях, в Moodle подходит для оценки личных успехов учащихся, а тем временем успешным завершением обучения по тому или иному курсу (предмету, дисциплине) должен считаться сданный зачет, либо экзамен.

LMS Moodle предоставляет широкие данные для анализа успеваемости студентов, учитывающие промежуточные и контрольные тесты. Однако для преподавателя и администрации зачатую важнее не сами баллы за отдельные задания, сколько информация о том, сколько обучающихся завершили обучение на том или ином этапе, сколько еще изучают курс, а сколько еще даже не приступали к обучению. Расширение интерфейса системы позволило бы использовать алгоритмы для статистического анализа данных и формирования ведомостей успеваемости с целью более детального визуального представления итогов обучения [2], а также получения такого показателя как процент аттестованных. Как уже было отмечено выше, в системе дистанционного обучения этот показатель говорит не только о качестве организации учебного процесса, но и качестве образовательного контента. Таким образом, для очной формы обучения возникает необходимость внедрения в курс таких разделов, как «посещаемость» и «итоговая оценка», которые заполняются преподавателями.

Для системы дистанционного обучения Московского педагогического государственного университета актуальной задачей является разработка аналитического модуля, ориентированного на процесс получения разными категориями пользователей аналитической информации в визуальном представлении за необходимый хронологический период о качестве цифрового образовательного контента.

В основу разработки данного модуля были положены две группы показателей: показатели активности обучающихся на курсе и показатели интерактивности инструментов разработки курса. При постановке такой задачи заказчики исходили из следующих предположений. Во-первых, предположения о том, что показатели активности обучающихся на курсе напрямую связаны с качеством цифрового образовательного контента, во-вторых, предположения о том, что интерактивность курса положительно влияет на интерес обучающихся к обучению, а характер интерактивности курса отражается в структуре инструментов, используемых для разработки курса.

В источниках [8-14] представлены результаты исследований, установившие связи между активностями студентов в онлайн среде и их успехами в обучении. В работе [15] авторы исследовали зависимость между журналами активностей учеников в LMS и их итоговыми оценками и пришли к выводу, что просмотры курса, просмотры заданий, просмотры форумов и просмотры ресурсов оказывают наибольшее влияние на оценки учащихся.

Для исследования интенсивности использования дистанционного курса за определенное время даже с помощью стандартного «Отчета о деятельности» (установив соответствующий временной фильтр) мы можем визуализировать данные о числе различных пользователей, просмотревших элементы курса за семестр. Мы можем в результате увидеть тенденцию к снижению или наоборот – увеличению учебной активности в течение всего семестра.

Оценка активности студентов по освоению курсов на платформе дистанционного обучения ИнфоДа Moodle МПГУ с помощью стандартных статистических отчетов системы подтверждает, что существует прямая связь между активностями студентов в онлайн среде и наличием в курсе элементов с обратной связью. Так, например, при правильном планировании курса, с помощью таких интерактивных элементов как H5P (интерактивный контент) и HotPot можно поддержать интерес у обучающихся во время всего периода обучения. При этом необходимо отметить, что наличие в курсе таких элементов как «Форум», «Чат», «Семинар» требует от обучающихся непосредственного общения с преподавателем, которое подразумевает, что обучающийся не один раз прикрепил свой ответ для проверки преподавателем и потом получил оценку, а несколько раз заходил в курс для того, чтобы поучаствовать в обсуждении какой-либо учебной проблемы и получить оценку.

Показателями активности учащегося в цифровой среде могут являться:

  • число обращений к видеолекциям и время их просмотра (в полном ли объеме прослушана лекция или частично);
  • доля (процент) видеолекций, которая была востребована учащимся (ко всем ли лекциям были запросы);
  • доля заданий (процент) заданий и электронных тестов, которые имели попытки прохождения, и какая часть из них была пройдена успешно;
  • среднее время выполнения заданий и прохождения тестов;
  • среднее число попыток (с какой попытки удалось пройти тест или выполнить задание);
  • число обращений к интерактивным элементам: лекция, семинар, H5P и пр.;
  • частота участия в форумах или блогах;
  • соблюдение порядка перемещения между ресурсами и элементами курса.

Как инструмент разработки контента определяет активность работы с ним можно рассмотреть на примере такого элемента как «Семинар». Элемент «Семинар» устроен так, что обучающийся не только должен открыть его, чтобы изучить вопрос, а потом прикрепить свой ответ, но элемент «Семинар» в Moodle также предусматривает механизм взаимного оценивания обучающимися работ друг друга. Это означает, что для того, чтобы семинар был завершен, необходимо еще принять участие в оценке работ своих одногруппников.

Таким образом, можно заметить, что в LMS Moodle заложена определенная логика организации обучения на курсе, в которой «ресурсы системы» выполняют функцию статичных элементов, то есть они только передают обучающимся информацию в одностороннем порядке, а «элементы системы» обеспечивают обратную связь. Это означает, что характер выбранных преподавателем ресурсов и элементов для разработки курсов определяет характер работы с курсовом обучающихся. При этом можно заметить, что «элементы» в разной степени поддерживают тот или иной уровень обратной связи. Например, чат и форум выполняют в системе схожие функции, при этом в чате необходимо присутствовать онлайн, а с помощью форума можно осуществлять оценку и консультировать в офлайн режиме.

Контроль знаний в системе можно проводить с помощью разных элементов, в том числе и с помощью форума и чата, однако только задания, подготовленные с помощью таких элементов как «Интерактивный контент», HotPot и «Лекция» обеспечивают максимальную поддержку обратной связи во время тестирования. Несмотря на то, что все элементы Moodle обеспечивают обратную связь, степень интерактивности у них разная.

Обсуждение

Показатели эффективности дистанционного обучения целесообразно анализировать системно. Объединение их в общую концепцию должно учитывать своеобразие процессов той или иной образовательной организации. При этом в процессах анализа и планирования могут быть задействованы алгоритмы машинного обучения, так как современный искусственный интеллект в образовании позволяет, в том числе, проводить мониторинг вовлеченности студентов в учебный процесс.

Существующие нейросети, как правило, решают узкий спектр задач. Из открытых источников можно выделить направления использования нейросетей в ряде учебных заведений страны, это:

  • помощь в изучения сложных тем учебных дисциплин;
  • оценка успеваемости обучаемых;
  • персонализация образования, учитывающая интересы и склонности учащихся, а также их индивидуальные особенности восприятия [4];
  • построение индивидуальных траекторий обучения;
  • оценка внимания студентов в ходе учебных занятий по распознаванию эмоций на их лицах;
  • проверка выполнения и разработка заданий конкретного курса;
  • аналитика качества учебных материалов.

Используемая в Московском педагогическом государственном университете система обучения Moodle допускает использование либо внешней искусственной нейросети, либо встроенной в систему нейросети (рис. 3). Учитывая тот факт, что система Moodle постоянно совершенствуется, что относится и к расширению возможностей встроенной нейросети, целесообразно именно ее и использовать для анализа учебного процесса. Встроенную нейросеть представляет API-интерфейс Moodle Analytics, который позволяет определять некоторые модели прогнозирования.

Изображение выглядит как текст, снимок экрана, Цвет электрик, Шрифт

Автоматически созданное описание

Рис. 3. Схема обработки данных нейросетью в LMS Moodle

Текущие версии Moodle предоставляют две встроенные модели прогнозирования: студенты рискуют бросить учебу; нет обучения.

Чтобы разнообразить образцы и охватить более широкий круг случаев, исследовательская группа штаб-квартиры Moodle собирает наборы данных для расширения функционала нейросети.

Нейросеть, в используемой в университете версии Moodle, реализует следующие модели аналитики [6]:

  • студенты с риском отчисления;
  • студенты, которые давно не заходили на курс;
  • студенты, которые еще не заходили на курс.

Модель основана на машинном обучении и прогнозировании, обучается на базе истории сайта для дальнейшего обнаружения или прогнозирования скрытых аспектов процесса обучения.

Для построения прогноза использует ряд показателей, основанных на понятиях «когнитивная глубина» и «социальная широта», которые применяются для каждого из основных модулей деятельности. Результаты прогноза могут выводиться в виде уведомлений пользователей (преподавателю и/или учащемуся).

Для каждого прогноза доступен набор действий:

  • отправить сообщение ученику;
  • просмотреть отчет о деятельности ученика;
  • просмотреть детали прогноза;
  • подтвердить прогноз или пометить его как бесполезный.

Очевидно, что необходимо дальнейшее постепенное внедрение современных методов машинного обучения и интеллектуального анализа данных в цифровые образовательные системы и, что не менее важно, обеспечение способов применения преподавателями получаемых аналитических результатов [7]. Это поможет образовательным организациям предотвращать академические неудачи, а студентам развивать навыки саморегуляции.

Внедрение искусственного интеллекта в сферу образования требует особого понимания, так как для получения ожидаемого эффекта требуется время и очень большое количество данных, необходимых для обучения нейросети. Кроме того, важно соблюдать следующие правила:

  • постоянно контролировать качество работы искусственного интеллекта, в том числе огромные наборы данных, используемых как для обучения нейросетей, так и для их оценки;
  • придерживаться принципов этичности и прозрачности, чтобы ошибки или неверная оценка данных не привели к серьёзным последствиям.

Важно помнить, что искусственный интеллект не заменяет преподавателя, а является его помощником, высвобождая время на рутинные процедуры. По мнению авторов, необходимо дальнейшее постепенное внедрение современных методов машинного обучения и интеллектуального анализа данных в цифровые образовательные системы и, что не менее важно, обеспечение способов применения преподавателями и администраторами курсов получаемых аналитических результатов.

Литература

  1. Андерсон К. Аналитическая культура. От сбора данных до бизнес-результатов. Издательство: МИФ. 2017, 420 с.
  2. Белоножко П.П., Карпенко А.П., Храмов Д.А. Анализ образовательных данных: направления и перспективы применения // Интернет-журнал Науковедение. 2017. Т. 9, № 4. URL:https:// naukovedenie.ru/PDF/15TVN417.pdf
  3. Вахидова Л.В., Манько Н.Н., Габитова Э.М., Штейнберг В.Э. Визуализация персонифицированной информационно-образовательной среды // Образовательные технологии. № 1, Москва, 2018. C. 34 – 47.
  4. Живенков А.Н., Иванова О.Г. Формирование плагинов LMS Moodle для адаптивного построения структуры курса электронного обучения // Экономика. Информатика. 2010. № 19-1 (90). C. 150—156.
  5. Капулин Д.В., Русских П.А. Технологические аспекты персонализации процесса обучения в среде LMS Moodle // Информатизация образования и методика электронного обучения: Материалы II Международной научной конференции, Красноярск, 25—28 сентября 2018 года, Сибирский федеральный университет. Красноярск: Сибирский федеральный университет, 2018. С. 173–177.
  6. Мамедова Г.А., Зейналова Л.А., Меликова Р.Т. Технологии больших данных в электронном образовании // Открытое образование. 2017. Т. 21, № 6. С. 41–48. DOI: https://doi.org/10.21-686/1818-4243-2017-6-41-48
  7. Перязева Ю.В., Калганов Ю.В. Формирование индивидуальных образовательных траекторий в традиционных LMS //Современные информационные технологии и ИТ-образование. 2020. Т. 16, No 3. С. 754–763. DOI: 10.25559/SITIT0.16.202003
  8. Сорокова М.Г., Одинцова М.А., Радчикова Н.П. Образовательные результаты студентов в электронных курсах при смешанном и онлайн-обучении // Моделирование и анализ данных. 2021. Т. 11, № 1. С. 61-77. DOI:10.17759/mda.2021110105.
  9. Стародубцев В.А., Ситникова О.В., Лобаненко О.Б. Оптимизация контента онлайн-курса по данным статистики активности пользователей // Высшее образование в России. 2019. Т. 28. № 8-9. С. 119–127. DOI: https://doi.org/10.31992/0869-3617-2019-28-8-9-119-127.
  10. Akcapinar G. Profiling students' approaches to learning through Moodle logs. // Proceedings of the Multidisciplinary Academic Conference, Prague, 2015. P. 242–248.
  11. Bogarin A., Romero C., Cerezo R. Discovering Students' Navigation Paths in Moodle // In: Proceedings of the 8th International Conference on Educational Data Mining, Madrid, Spain, 26-29 June, 2015, Pp. 556–557. URL: http://educationaldatamining.org/EDM2015/proceedings/poster556-557.pdf
  12. Kadoic N., Oreski D. Analysis of student behavior and success based on logs in Moodle // In: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2018. P. 0654–0659. DOI:10.23919/MIPR0.2018.8400123
  13. Mogus A.M., Djurdjevic I., Suvak N. The impact of student activity in a virtual learning environment on their final mark // Active Learning in Higher Education. 2012. Vol. 13. No. 3. Pp. 177–189. DOI:10.1177/1469787412452985
  14. Stiller K., Bachmaier R. Identifying learner types in distance training by using study times. In: Proceedings of the European Distance and E-Learning Network Conference, Genoa, Italy, June 17-20, 2018. P. 78-86. URL: http://www.eden-online.org/wp-content/uploads/ 2018/06/ Annual_2018_Gen-ova_Proceedings.pdf
  15. Terbusheva E., Piotrowska X., Kalmykova S. Analytics of the digital behavior of russian first-2021 university students: Case study // CEUR Workshop Proceedings: 15, Saint-Petersburg, 25 March 2020., 2020. P. 28–39.

Информация об авторах

Демина Светлана Александровна, кандидат экономических наук, доцент, директор Центра дистанционных образовательных технологий, Московский педагогический государственный университет (ФГБОУ ВО МПГУ), Москва, Российская Федерация, ORCID: https://orcid.org/0000-0003-1637-4587, e-mail: svetlana-mefi@yandex.ru

Постырнак Валерий Ильич, доцент, ведущий специалист Центра дистанционных образовательных технологий, Московский педагогический государственный университет (ФГБОУ ВО МПГУ), Москва, Российская Федерация, ORCID: https://orcid.org/0000-0003-3073-549X, e-mail: vip_1948@mail.ru

Михайлова Марина Васильевна, доктор физико-математических наук, Профессор, Заведующий кафедрой бизнес информатики, Институт управления, экономики и финансов, Университет мировых цивилизаций им. В.В. Жириновского, профессор кафедры "Алгебры", Московский государственный педагогический университет, Москва, Российская Федерация, e-mail: mmvne@yandex.ru

Метрики

Просмотров

Всего: 1422
В прошлом месяце: 169
В текущем месяце: 12

Скачиваний

Всего: 70
В прошлом месяце: 12
В текущем месяце: 0

!
Портрет читателя
Пройти опрос