Application of Criteria Aggregation Techniques for the Selection of Innovative Products

133

Abstract

The peculiarity of innovative products requires taking into account a large number of criteria that should be aggregated into generalized ones and building a convolution tree with qualitative, quantitative and fuzzy rules. The paper proposes a methodology for the optimal partitioning of criteria scales into generalized gradations for using combined methods of multicriteria analysis of alternatives. The transition to fewer criteria leads to a signifi cant increase in the dimension of the scales of generalized criteria. Scales have to be converted to new scales with fewer gradations. To solve the problem of minimizing the information loss occurring when converting the scales picked Bellman function and applied method of dynamic programming. Computational experiments have shown the effectiveness of the proposed approach.

General Information

Keywords: innovative products, the aggregation criteria, the Bellman function, multicriteria analysis of alternatives, scale, ranging, integrated assessment, minimization of information loss

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2020100105

For citation: Sivakova T.V., Sudakov V.A. Application of Criteria Aggregation Techniques for the Selection of Innovative Products. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2020. Vol. 10, no. 1, pp. 86–95. DOI: 10.17759/mda.2020100105. (In Russ., аbstr. in Engl.)

References

  1. Michaelides P.G.Joseph Schumpeter and the German Historical School. Cambridge Journal of Economics. 33(3).2009, pp. 495–516.
  2. Corrente, S., Greco, S. and Slowinski R. Multiple Criteria Hierarchy Process in Robust Ordinal Regression. Decision Support Systems. 53(3). 2012, pp. 660–674. (In Russ., abstr. In Engl.)
  3. Litvak B.G. Jekspertnye ocenki i prinjatie reshenij [Expert evaluation and decision-making]. M.: Patent, 1996, 271 c.
  4. Posadskij A.I., Sivakova T.V., Sudakov V.A. Agregirovanie nechetkih suzhdenijj ekspertov [Aggregation of fuzzy expert judgments]. Preprinty IPM im. M.V. Keldysha. 2019. № 101. 12 s. doi:10.20948/prepr-2019–101 URL: http://library.keldysh.ru/preprint.asp? id=2019–101.
  5. Saaty T.L. and Vargas L.G.Models Methods, Concepts and Applications of the Analytic Hierarchy Process. Boston: Kluwer Academic Publishers. 2000.
  6. Batkovskiy, A. M., Nesterov, V. A., Semenova, E. G., Sudakov, V. A. and Fomina A.V. Developing intelligent decision support systems in multi-criteria problems of administrative-territorial formations infrastructure projects assessment. Journal of Applied Economic Sciences. 5(51). 2017, pp. 1301– 1311.
  7. Arndt C. Information Measures: Information and its Description in Science and Engineering. Berlin: Springer. 2004.
  8. Eddy S.R. What is Dynamic Programming? Nature Biotechnology. 22(7). 2004, pp. 909–910.
  9. Sudakov V.A., Nesterov, V. A. and Kurennykh A.E. Integration of decision support systems ‘kosmos’ and WS-DSS with computer models. Proceedings of 2017 10th International Conference Management of Large-Scale System Development (MLSD). Moscow, Russia: IEEE.
  10. Sivakova T.V., Sudakov V.A. Metod nechetkih oblastej predpochtenii dlja ocenkij effektivnosti innovacij [Fuzzy areas preference method for evaluating innovation performance]. XXVIII Mezhdunarodnaja nauchno-tehnicheskaja konferencija “Sovremennye tehnologii v zadachah upravlenija, avtomatiki i obrabotki informacii”. Alushta, 14–20 sentjabrja 2019 g. Sbornik trudov. [Proceedings of the XXVIII International Scientifi c and Technical Conference “Modern Technologies in the Problems of Control, Automation and Information Processing”], Alushta. M.: Izd.-vo Nacional’nyj issledovatel’skij jadernyj universitet “MIFI”, 2019. S. 81–82.

Information About the Authors

Tatyana V. Sivakova, Researcher, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), researcher, Plekhanov Russian University of Economics, Moscow, Russia, ORCID: https://orcid.org/0000-0001-8026-2198, e-mail: sivakova15@mail.ru

Vladimir A. Sudakov, Doctor of Engineering, Professor of Department 805, Moscow Aviation Institute (MAI), Leading Researcher, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), Moscow, Russia, ORCID: https://orcid.org/0000-0002-1658-1941, e-mail: sudakov@ws-dss.com

Metrics

Views

Total: 342
Previous month: 3
Current month: 3

Downloads

Total: 133
Previous month: 6
Current month: 3