Journal of Modern Foreign Psychology
2020. Vol. 9, no. 2, 93–106
doi:10.17759/jmfp.2020090208
ISSN: 2304-4977 (online)
Decision making under uncertainty: exploration and exploitation
Abstract
General Information
Keywords: uncertainty, decision-making, exploration-exploitation trade-off, norepinephrine, dopamine, acetylcholine.
Journal rubric: Neurosciences and Cognitive Studies
DOI: https://doi.org/10.17759/jmfp.2020090208
Funding. The reported study was funded by Russian Science Foundation (RSF), project number 14-06-14029.
Acknowledgements. The authors are grateful to Stroganova T.A. for her great contribution to research on neurocognitive mechanisms of decision-making in the Moscow MEG center.
For citation: Sayfulina K.E., Kozunova G.L., Medvedev V.A., Rytikova A.M., Chernyshev B.V. Decision making under uncertainty: exploration and exploitation [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 93–106. DOI: 10.17759/jmfp.2020090208. (In Russ., аbstr. in Engl.)
References
- Kaneman D., Tverski A. Ratsional'nyi vybor, tsennosti i freimy [Rational choice, values and frames]. Psikhologicheskii zhurnal [Psychological journal], 2003. Vol. 24, no. 4, pp. 31–43.
- Beeler J.A. et al. A kinder, gentler dopamine... highlighting dopamine's role in behavioral flexibility. Frontiers in neuroscience, 2014. Vol. 8, article ID 4, 2 p. DOI:10.3389/fnins.2014.00004
- Gehring W.J. et al. A neural system for error detection and compensation. Psychological science, 1993. Vol. 4, no. 6, pp. 385–390. DOI:10.1111/j.1467-9280.1993.tb00586.x
- Addicott M.A. et al. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology, 2017. Vol. 42, pp. 1931–1939. DOI:10.1038/npp.2017.108
- Aspers P. Forms of uncertainty reduction: decision, valuation, and contest. Theory and society, 2018. Vol. 47, pp. 133–149. DOI:10.1007/s11186-018-9311-0
- Aston-Jones G., Cohen J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 2005. Vol. 28, pp. 403–450. DOI:10.1146/annurev.neuro.28.061604.135709
- Aston-Jones G., Rajkowski J., Kubiak P. Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience, 1997. Vol. 80, no. 3, pp. 697–715. DOI:10.1016/S0306-4522(97)00060-2
- Barack D.L., Gold J.I. Temporal trade-offs in psychophysics. Current opinion in neurobiology, 2016. Vol. 37, pp. 121–125. DOI:10.1016/j.conb.2016.01.015
- Blanchard V.C., Gershman S.J. Pure correlates of exploration and exploitation in the human brain. Cognitive, Affective, & Behavioral Neuroscience, 2018. Vol. 18, no. 1, pp. 117–126. DOI:10.3758/s13415-017-0556-2
- Boschin E.A., Piekema C., Buckley M.J. Essential functions of primate frontopolar cortex in cognition. Proceedings of the National Academy of Sciences, 2015. Vol. 112, no. 9, pp. E1020–E1027. DOI:10.1073/pnas.1419649112
- Botvinick M.M., Cohen J.D., Carter C.S. Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences, 2004. Vol. 8, no. 12, pp. 539–546. DOI:10.1016/j.tics.2004.10.003
- Cavanagh J.F., Frank M.J. Frontal theta as a mechanism for cognitive control. Trends in cognitive sciences, 2014. Vol. 18, no. 8, pp. 414–421. DOI:10.1016/j.tics.2014.04.012
- Conant R.C., Ross Ashby W. Every good regulator of a system must be a model of that system. International journal of systems science, 1970. Vol. 1, no. 2, pp. 89–97. DOI:10.1080/00207727008920220
- Cook Z., Franks D.W., Robinson E.J.H. Exploration versus exploitation in polydomous ant colonies. Journal of theoretical biology, 2013. Vol. 323, pp. 49–56. DOI:10.1016/j.jtbi.2013.01.022
- Daw N.D. et al. Cortical substrates for exploratory decisions in humans. Nature, 2006. Vol. 441, pp. 876–879. DOI:10.1038/nature04766
- Denison S., Xu F. Infant statisticians: The origins of reasoning under uncertainty. Perspectives on Psychological Science, 2019. Vol. 14, no. 4, pp. 499–509. DOI:10.1177/1745691619847201
- Cinotti F. et al. Dopamine blockade impairs the exploration-exploitation trade-off in rats. Scientific reports, 2019. Vol. 9, no. 1, pp. 1–14. DOI:10.1038/s41598-019-43245-z
- Kayser A.S. et al. Dopamine, locus of control, and the exploration-exploitation tradeoff. Neuropsychopharmacology, 2015. Vol. 40, no. 2, pp. 454–462. DOI:10.1038/npp.2014.193
- Humphreys K.L. et al. Exploration–Exploitation strategy is dependent on early experience. Developmental Psychobiology, 2015. Vol. 57, no. 3, pp. 313–321. DOI:10.1002/dev.21293
- Fobbs W.C., Mizumori S.J.Y. Cost–Benefit Decision Circuitry: Proposed Modulatory Role for Acetylcholine. Progress in molecular biology and translational science, 2014. Vol. 122, pp. 233–261. DOI:10.1016/B978-0-12-420170-5.00009-X
- Frank M.J., Hutchison K. Genetic contributions to avoidance-based decisions: striatal D2 receptor polymorphisms. Neuroscience, 2009. Vol. 164, no. 1, pp. 131–140. DOI:10.1016/j.neuroscience.2009.04.048
- Gehring W.J., Willoughby A.R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 2002. Vol. 295, no. 5563, pp. 2279–2282. DOI:10.1126/science.1066893
- Gold J.I., Shadlen M.N. The neural basis of decision making. Annual review of neuroscience, 2007. Vol. 30, pp. 535–574. DOI:10.1146/annurev.neuro.29.051605.113038
- Hills V.V. Animal foraging and the evolution of goal‐directed cognition. Cognitive science, 2006. Vol. 30, no. 1, pp. 3–41. DOI:10.1207/s15516709cog0000_50
- Huang Y., Yu R. The feedback-related negativity reflects “more or less” prediction error in appetitive and aversive conditions. Frontiers in neuroscience, 2014. Vol. 8, article ID 108, 6 p. DOI:10.3389/fnins.2014.00108
- Jepma M., Nieuwenhuis S. Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of cognitive neuroscience, 2011. Vol. 23, no. 7, pp. 1587–1596. DOI:10.1162/jocn.2010.21548
- Kahneman D., Tversky A. Variants of uncertainty. Cognition, 1982. Vol. 11, no. 2, pp. 143–157. DOI:10.1016/0010-0277(82)90023-3
- Killeen P.R. Pavlov + Skinner = Premack [Elektronnyi resurs]. International Journal of Comparative Psychology, 2014. Vol. 27, no. 4, pp. 544–568. URL: https://www.researchgate.net/profile/Peter_Killeen2/publication/269873794_Pavlov_Skinner_Premack/links/549861d30cf2c5a7e342bdca.pdf (Accessed 05.06.2020).
- McDannald M.A. et al. Learning theory: a driving force in understanding orbitofrontal function. Neurobiology of learning and memory, 2014. Vol. 108, pp. 22–27. DOI:10.1016/j.nlm.2013.06.003
- Zhang D. et al. Linking brain electrical signals elicited by current outcomes with future risk decision-making. Frontiers in behavioral neuroscience, 2014. Vol. 8, article ID 34, 15 p. DOI:10.3389/fnbeh.2014.00084
- Linson A., Parr V., Friston K.J. Active inference, stressors, and psychological trauma: A neuroethological model of (mal) adaptive explore-exploit dynamics in ecological context. Behavioural Brain Research, 2020. Vol. 380, pp. 112–421. DOI:10.1016/j.bbr.2019.112421
- Aston-Jones G. et al. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 1994. Vol. 14, no. 7, pp. 4467–4480. DOI:10.1523/JNEUROSCI.14-07-04467.1994
- Mansouri F.A. et al. Managing competing goals – a key role for the frontopolar cortex. Nature Reviews Neuroscience, 2017. Vol. 18, no. 11, pp. 645–657. DOI:10.1038/nrn.2017.111
- Mata R., Wilke A., Czienskowski U. Foraging across the life span: is there a reduction in exploration with aging? Frontiers in neuroscience, 2013. Vol. 7, article ID 34, 7 p. DOI:10.3389/fnins.2013.00053
- McClure S.M., Gilzenrat M.S., Cohen J.D. An exploration-exploitation model based on norepinephrine and dopamine activity [Elektronnyi resurs]. In Weiss Y., Schölkopf B., Platt J.C. (eds.), Advances in neural information processing systems: proceedings from the conference "Neural Information Processing Systems 2005", 2006, pp. 867–874. URL: https://papers.nips.cc/paper/2950-an-exploration-exploitation-model-based-on-norepinepherine-and-dopamine-activity.pdf (Accessed 05.06.2020).
- Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Annual review of neuroscience, 2001. Vol. 24, pp. 167–202. DOI:10.1146/annurev.neuro.24.1.167
- Miltner W.H.R., Braun C.H., Coles M.G.H. Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. Journal of cognitive neuroscience, 1997. Vol. 9, no. 6, pp. 788–798. DOI:10.1162/jocn.1997.9.6.788
- Heil M. et al. N200 in the Eriksen-task: Inhibitory executive process? Journal of Psychophysiology, 2000. Vol. 14, no. 4, pp. 218–225. DOI:10.1027//0269-8803.14.4.218
- Pearson J.M. et al. Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task. Current biology, 2009. Vol. 19, no. 18, pp. 1532–1537. DOI:10.1016/j.cub.2009.07.048
- Naudé J. et al. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking. Nature neuroscience, 2016. Vol. 19, no. 3, pp. 471–478. DOI:10.1038/nn.4223
- Onge J.R.S., Abhari H., Floresco S.B. Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making. Journal of Neuroscience, 2011. Vol. 31, no. 23, pp. 8625–8633. DOI:10.1523/JNEUROSCI.1020-11.2011
- Stopper C.M. et al. Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 2014. Vol. 84, no. 1, pp. 177–189. DOI:10.1016/j.neuron.2014.08.033
- Padoa-Schioppa C., Conen K.E. Orbitofrontal cortex: a neural circuit for economic decisions. Neuron, 2017. Vol. 96, no. 4, pp. 736–754. DOI:10.1016/j.neuron.2017.09.031
- Parr V., Friston K.J. Uncertainty, epistemics and active inference. Journal of The Royal Society Interface, 2017. Vol. 14, no. 136, 10 p. DOI:10.1098/rsif.2017.0376
- Lee M.D. et al. Psychological models of human and optimal performance in bandit problems. Cognitive Systems Research, 2011. Vol. 12, no. 2, pp. 164–174. DOI:10.1016/j.cogsys.2010.07.007
- Bartholow B.D. et al. Psychophysiological evidence of response conflict and strategic control of responses in affective priming. Journal of Experimental Social Psychology, 2009. Vol. 45, no. 4, pp. 655–666. DOI:10.1016/j.jesp.2009.02.015
- Rakow V., Newell B.R., Zougkou K. The role of working memory in information acquisition and decision making: Lessons from the binary prediction task. The Quarterly Journal of Experimental Psychology, 2010. Vol. 63, no. 7, pp. 1335–1360. DOI:10.1080/17470210903357945
- Kiebel S.J. et al. Recognizing sequences of sequences. PLoS computational biology, 2009. Vol. 5, no. 8, 14 p. DOI:10.1371/journal.pcbi.1000464
- Laviola G. et al. Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 2003. Vol. 27, no. 1–2, pp. 19–31. DOI:10.1016/S0149-7634(03)00006-X
- Badre D. et al. Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron, 2012. Vol. 73, no. 3, pp. 595–607. DOI:10.1016/j.neuron.2011.12.025
- Sara S.J. The locus coeruleus and noradrenergic modulation of cognition. Nature reviews neuroscience, 2009. Vol. 10, no. 3, pp. 211–223. DOI:10.1038/nrn2573
- Slovic P. Risk-taking in children: Age and sex differences. Child Developmen, 1966. Vol. 37, no. 1, pp. 169–176. DOI:10.2307/1126437
- Smith A.P., Beckmann J.S., Zentall V.R. Gambling-like behavior in pigeons:‘jackpot’signals promote maladaptive risky choice. Scientific reports, 2017. Vol. 7, no. 1, pp. 1–11. DOI:10.1038/s41598-017-06641-x
- Addicott M.A. et al. Smoking and the bandit: A preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task. Experimental and clinical psychopharmacology, 2013. Vol. 21, no. 1, pp. 66–73. DOI:10.1037/a0030843
- Steyvers M., Lee M.D., Wagenmakers E.J. A Bayesian analysis of human decision-making on bandit problems. Journal of Mathematical Psychology, 2009. Vol. 53, no. 3, pp. 168–179. DOI:10.1016/j.jmp.2008.11.002
- Warren C.M. et al. The effect of atomoxetine on random and directed exploration in humans. PloS one, 2017. Vol. 12, no. 4, 17 p. DOI:10.1371/journal.pone.0176034
- Usher M. et al. The role of locus coeruleus in the regulation of cognitive performance. Science, 1999. Vol. 283, no. 5401, pp. 549–554. DOI:10.1126/science.283.5401.549
- Jepma M. et al. The role of the noradrenergic system in the exploration-exploitation trade-off: a pharmacological study. Frontiers in human neuroscience, 2010. Vol. 4, article ID 170, 13 p. DOI:10.3389/fnhum.2010.00170
- Laureiro‐Martínez D. et al. Understanding the exploration–exploitation dilemma: An fMRI study of attention control and decision‐making performance. Strategic Management Journal, 2015. Vol. 36, no. 3, pp. 319–338. DOI:10.1002/smj.2221
- Mehlhorn K. et al. Unpacking the exploration–exploitation tradeoff: A synthesis of human and animal literatures. Decision, 2015. Vol. 2, no. 3, pp. 191–215. DOI:10.1037/dec0000033
- Verdolin J.L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behavioral Ecology and Sociobiology, 2006. Vol. 60, no. 4, pp. 457–464. DOI:10.1007/s00265-006-0172-6
- Yuki S., Okanoya K. Rats show adaptive choice in a metacognitive task with high uncertainty. Journal of Experimental Psychology: Animal Learning and Cognition, 2017. Vol. 43, no. 1, pp. 109–118. DOI:10.1037/xan0000130
- Zentall V.R. An animal model of human gambling based on pigeon suboptimal choice [Elektronnyi resurs]. Research & Reviews: Neuroscience, 2017. Vol. 1, no. 2, pp. 27–37. URL: https://pdfs.semanticscholar.org/f4ba/8ebce42ca058e780c9afb1322b7440bc8649.pdf (Accessed 05.06.2020).
- Zentall V.R. Suboptimal choice by pigeons: An analog of human gambling behavior. Behavioural processes, 2014. Vol. 103, pp. 156–164. DOI:10.1016/j.beproc.2013.11.004
Information About the Authors
Metrics
Views
Total: 1707
Previous month: 92
Current month: 54
Downloads
Total: 993
Previous month: 22
Current month: 4