Journal of Modern Foreign Psychology
2020. Vol. 9, no. 2, 82–92
doi:10.17759/jmfp.2020090207
ISSN: 2304-4977 (online)
Neurocognitive aspects of timing and sensorimotor synchronization
Abstract
General Information
Keywords: timing, time perception, sensorimotor synchronization, tapping, cognitive functions, emotions.
Journal rubric: Neurosciences and Cognitive Studies
Article type: review article
DOI: https://doi.org/10.17759/jmfp.2020090207
For citation: Kovaleva A.V. Neurocognitive aspects of timing and sensorimotor synchronization [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 82–92. DOI: 10.17759/jmfp.2020090207. (In Russ., аbstr. in Engl.)
References
- Kovaleva A.V. Fiziologicheskie osnovy vospriyatiya i vosproizvedeniya ritma v nevrologii [Physiological basis of perception and reproduction of rhythm in neurology] [Elektronnyi resurs]. Russkii meditsinskii zhurnal. Nevrologiya = Russian Medical Journal. Neurology, 2018. Vol. 26, no. 12-1, P. 61–66. URL: https://www.rmj.ru/articles/nevrologiya/Fiziologicheskie_osnovy_vospriyatiya_i_vosproizvedeniya_ritma_v_nevrologii/ (Accessed 08.06.2020). (In Russ.).
- Sares A.G. et al. Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Annals of the New York Academy of Sciences, 2019. Vol. 1449, no. 1, pp. 56–69. DOI:10.1111/nyas.14117
- Bobin-Bègue A., Droit-Volet S., Provasi J. Young children’s difficulties in switching from rhythm production to temporal interval production (> 1 s). Frontiers in psychology, 2014. Vol. 5, article ID 1346, 10 p. DOI:10.3389/fpsyg.2014.01346
- Bradley M., Lang P. International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings: Technical Report no. b-2: Vol. 803. 1999. 49 p.
- Buhusi C.V., Meck W.H. Interval timing with gaps and distracters: evaluation of the ambiguity, switch, and time-sharing hypotheses. Journal of experimental psychology: Animal behavior processes, 2006. Vol. 32, no. 3, pp. 329–338. DOI:10.1037/0097-7403.32.3.329
- Molinari M. et al. Cerebellum and detection of sequences, from perception to cognition. The Cerebellum, 2008. Vol. 7, no. 4, pp. 611–615. DOI:10.1007/s12311-008-0060-x
- Ptacek R. et al. Clinical Implications of the Perception of Time in Attention Deficit Hyperactivity Disorder (ADHD): A Review. Medical science monitor: international medical journal of experimental and clinical research, 2019. Vol. 25, pp. 3918–3924. DOI:10.12659/MSM.914225
- Cheng R.K. et al. Clock speed as a window into dopaminergic control of emotion and time perception. Timing & Time Perception, 2016. Vol. 4, no. 1, pp. 99–122. DOI:10.1163/22134468-00002064
- Corriveau K.H., Goswami U. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex, 2009. Vol. 45, no. 1, pp. 119–130. DOI:10.1016/j.cortex.2007.09.008
- Cos I., Girard B., Guigon E. Balancing out dwelling and moving: optimal sensorimotor synchronization. Journal of neurophysiology, 2015. Vol. 114, no. 1, pp. 146–158. DOI:10.1152/jn.00175.2015
- Coull J.T., Cheng R.K., Meck W.H. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 2011. Vol. 36, no. 1, pp. 3–25. DOI:10.1038/npp.2010.113
- Okuda J. et al. Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-and event-based prospective memory. International Journal of Psychophysiology, 2007. Vol. 64, no. 3, pp. 233–246. DOI:10.1016/j.ijpsycho.2006.09.009
- Zachopoulou E. et al. Differentiation of parameters for rhythmic ability among young tennis players, basketball players and swimmers. European Journal of Physical Education, 2000. Vol. 5, no. 2, pp. 220–230. DOI:10.1080/1740898000050208
- Provasi J. et al. Disrupted sensorimotor synchronization, but intact rhythm discrimination, in children treated for a cerebellar medulloblastoma. Research in developmental disabilities, 2014. Vol. 35, no. 9, pp. 2053–2068. DOI:10.1016/j.ridd.2014.04.024
- Jerde T.A. et al. Dissociable systems of working memory for rhythm and melody. Neuroimage, 2011. Vol. 57, no. 4, pp. 1572–1579. DOI:10.1016/j.neuroimage.2011.05.061
- Matthews A.R. et al. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction. Frontiers in integrative neuroscience, 2012. Vol. 6, article ID 111, 12 p. DOI:10.3389/fnint.2012.00111
- O'Reilly J.X. et al. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral cortex, 2010. Vol. 20, no. 4, pp. 953–965. DOI:10.1093/cercor/bhp157
- Donnellan A.M., Hill D.A., Leary M.R. Rethinking autism: implications of sensory and movement differences for understanding and support. Frontiers in integrative neuroscience, 2013. Vol. 6, 11 p. DOI:10.3389/fnint.2012.00124
- Droit‐Volet S., Brunot S., Niedenthal P. Brief report: Perception of the duration of emotional events. Cognition and Emotion, 2004. Vol. 18, no. 6, pp. 849–858. DOI:10.1080/02699930341000194
- Droit-Volet S., Meck W.H. How emotions colour our perception of time. Trends in cognitive sciences, 2007. Vol. 11, no. 12, pp. 504–513. DOI:10.1016/j.tics.2007.09.008
- Buijink A. et al. Essential tremor, the olivocerebellar system and motor timing–An fMRI study. Clinical Neurophysiology, 2016. Vol. 127, no. 3, 6 p. DOI:10.1016/j.clinph.2015.10.020
- Grahn J.A. Neural mechanisms of rhythm perception: current findings and future perspectives. Topics in cognitive science, 2012. Vol. 4, no. 4, pp. 585–606. DOI:10.1111/j.1756-8765.2012.01213.x
- Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 2010. Vol. 72, no. 3, pp. 561–582. DOI:10.3758/APP.72.3.561
- Holm L., Ullén F., Madison G. Motor and executive control in repetitive timing of brief intervals. Journal of Experimental Psychology: Human Perception and Performance, 2013. Vol. 39, no. 2, pp. 365–380. DOI:10.1037/a0029142
- Noulhiane M. et al. How Emotional Auditory Stimuli Modulate Time Perception. Emotion, 2007. Vol. 7, no. 4, pp. 697–704. DOI:10.1037/1528-3542.7.4.697
- White-Schwoch T.A. et al. Individual differences in rhythm skills: links with neural consistency and linguistic ability. Journal of Cognitive Neuroscience, 2017. Vol. 29, no. 5, pp. 855–868. DOI:10.1162/jocn_a_01092
- Karmarkar U.R., Buonomano D.V. Timing in the absence of clocks: encoding time in neural network states. Neuron, 2007. Vol. 53, no. 3, pp. 427–438. DOI:10.1016/j.neuron.2007.01.006
- Kotz S.A., Ravignani A., Fitch W.T. The evolution of rhythm processing. Trends in cognitive sciences, 2018. Vol. 22, no. 10, pp. 896–910. DOI:10.1016/j.tics.2018.08.002
- Lang P.J., Bradley M.M., Cuthbert B.N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report A-6. Gainesville, Fl. : NIMH, Center for the Study of Emotion & Attention, 2005.
- Martel A.C., Apicella P. Temporal processing in the striatum: interplay between midbrain dopamine neurons and striatal cholinergic interneurons. European Journal of Neuroscience, 2020. 10 p. (In press). DOI:10.1111/ejn.14741
- McGrew K., Vega A. The efficacy of rhythm-based (mental timing) treatments with subjects with a variety of clinical disorders: A brief review of theoretical, diagnostic, and treatment research. Institute for Applied Psychometrics Research Report. 2009, no. 9, 32 p.
- Meck W.H., MacDonald C.J. Amygdala inactivation reverses fear's ability to impair divided attention and make time stand still. Behavioral neuroscience, 2007. Vol. 121, no. 4, pp. 707–720. DOI:10.1037/0735-7044.121.4.707
- Monier F., Droit-Volet S. Development of sensorimotor synchronization abilities: Motor and cognitive components. Child Neuropsychology, 2019. Vol. 25, no. 8, pp. 1043–1062. DOI:10.1080/09297049.2019.1569607
- Paton J.J., Buonomano D.V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron, 2018. Vol. 98, no. 4, pp. 687–705. DOI:10.1016/j.neuron.2018.03.045
- Repp B.H., Su Y.H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic bulletin & review, 2013. Vol. 20, no. 3, pp. 403–452. DOI:10.3758/s13423-012-0371-2
- Tanaka M. et al. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience, 2020. 30 p. (In press). DOI:10.1016/j.neuroscience.2020.04.039
- Stoodley C.J., Valera E.M., Schmahmann J.D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage, 2012. Vol. 59, no. 2, pp. 1560–1570. DOI:10.1016/j.neuroimage.2011.08.065
- Sugiyama T., Liew S.L. The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation. Journal of motor behavior, 2017. Vol. 49, no. 1, pp. 67–77. DOI:10.1080/00222895.2016.1241740
- Konoike N. et al. Temporal and motor representation of rhythm in fronto-parietal cortical areas: an fMRI study. PloS one, 2015. Vol. 10, no. 6, 19 p. DOI:10.1371/journal.pone.0130120
- Thaut M.H., Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Perception: An Interdisciplinary Journal, 2010. Vol. 27, no. 4, pp. 263–269. DOI:10.1525/mp.2010.27.4.263
- Angrilli A. et al. The influence of affective factors on time perception [Электронный ресурс]. Perception & psychophysics, 1997. Vol. 59, no. 6, pp. 972–982. URL: https://link.springer.com/content/pdf/10.3758/BF03205512.pdf (Accessed 08.06.2020).
- Tierney A.T., Kraus N. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain and language, 2013. Vol. 124, no. 3, pp. 225–231. DOI:10.1016/j.bandl.2012.12.014
- Droit-Volet S. et al. Time perception in children treated for a cerebellar medulloblastoma. Research in developmental disabilities, 2013. Vol. 34, no. 1, pp. 480–494. DOI:10.1016/j.ridd.2012.09.006
- Janzen T.B. et al. Timing skills and expertise: discrete and continuous timed movements among musicians and athletes. Frontiers in psychology, 2014. Vol. 5, article ID 1482, 11 p. DOI:10.3389/fpsyg.2014.01482
- Mioni G. et al. Understanding time perception through non-invasive brain stimulation techniques: A review of studies. Behavioural brain research, 2020. Vol. 377, article ID 112232. 17 p. DOI:10.1016/j.bbr.2019.112232
- Van de Vorst R., Gracco V.L. Atypical non-verbal sensorimotor synchronization in adults who stutter may be modulated by auditory feedback. Journal of fluency disorders, 2017. Vol. 53, pp. 14–25. DOI:10.1016/j.jfludis.2017.05.004
- Vicario C.M. Cognitively controlled timing and executive functions develop in parallel? A glimpse on childhood research. Frontiers in behavioral neuroscience, 2013. Vol. 7, article ID 146, 4 p. DOI:10.3389/fnbeh.2013.00146
- Williams K.E. Moving to the beat: Using music, rhythm, and movement to enhance self-regulation in early childhood classrooms. International Journal of Early Childhood, 2018. Vol. 50, no. 1, pp. 85–100. DOI:10.1007/s13158-018-0215-y
Information About the Authors
Metrics
Views
Total: 696
Previous month: 18
Current month: 9
Downloads
Total: 408
Previous month: 4
Current month: 4