Rhythms of EEG and cognitive processes

10028

Abstract

The study of cognitive processes is regarded to be more effective if it combines a psychological approach with a neurophysiological one. This approach makes it possible to come closer to understanding of the basic mechanisms of different cognitive processes, to describe the patterns of forming these mechanisms in ontogenesis, to investigate the origin of cognitive impairments, and to develop intervention techniques. The promising way of investigating the mechanisms of cognitive functions is the electroencephalography (EEG). This is a non-invasive, safe, and relatively cheap method of research of the functional condition of the brain. The characteristics of EEG rhythms, recorded with different cognitive loads, reflect the processes of functional modulation of neural network activity of the cortex, which serves the neurophysiologic basis for attention, memory and other cognitive processes. The article provides an overview of works containing the analysis of the alpha and theta rhythms’ dynamics in various states of wakefulness. It also introduces the substantiation of methodology of functional regulatory approach to the interpretation of behaviors of EEG rhythms.

General Information

Keywords: electroencephalography (EEG), Alpha- rhythm, Theta- rhythm, amplitude, memory, attention

Journal rubric: Neurosciences and Cognitive Studies

For citation: Orlova S.I. Rhythms of EEG and cognitive processes [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2015. Vol. 4, no. 1, pp. 91–108. (In Russ., аbstr. in Engl.)

References

  1. Stroganova T.A., Posikera I.N. Funktsional'naya organizatsiya povedencheskikh sostoyanii bodrstvovaniya mladentsev (elektroentsefalograficheskoe issledovanie) [Functional organization of behavioral states of wakefulness babies (electroencephalographic study)]. Mozg i povedenie mladentsa [Brain and behavior of the baby]. O.S. Adrianova, ed.. Moscow: Publ. In-ta psikhol. RAN, 1993. Pp. 78–166.
  2. A method for the calculation of induced band power: implications for the significance of brain oscillations. Klimesch W., [et al.]. Electroencephalogr Clin Neurophysiol, 1998. Vol. 108, no. 2, pp. 123–30. doi:10.1016/S0168-5597(97)00078-6.
  3. Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Klimesch W., [et al.]. Neurosci Lett, 1997. Vol. 238, no. 1-2, pp. 9–12. doi:10.1016/S0304-3940(97)00771-4.
  4. Burgess N., Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron, 2002. Vol. 35, no. 4, pp. 625–641. doi:10.1016/S0896-6273(02)00830-9.
  5. Buzsáki G. Theta oscillations in the hippocampus. Neuron, 2002. Vol. 33, no. 3, pp. 325–340. doi:10.1016/S0896-6273(02)00586-X.
  6. Buzsáki G., Moser E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 2013. Vol. 16, pp.130–138. doi:10.1038/nn.3304.
  7. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Suffczynski P., [et al.]. Int J Psychophysiol, 2001. Vol. 43, no. 1. pp. 25–40. doi:10.1016/S0167-8760(01)00177-5.
  8. Control mechanisms in working memory: A possible function of EEG theta oscillation. Sauseng P., [et al.]. Neuroscience and Biobehavioral Reviews, 2010. Vol. 34, pp. 1015–1022. doi:10.1016/j.neubiorev.2009.12.006.
  9. Distinct contributions of human hippocampal theta to spatial cognition and anxiety. Cornwell B.R., [et al.].  Hippocampus, 2012. Vol. 22, no. 9. pp . 1848–1859. doi: 10.1002/hipo.22019.
  10. Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. Caplan J.B., [et al.]. J Neurophysiol, 2001. Vol. 86, no. 1, pp. 368–380.
  11. Duvernoy H.M. The human hippocampus: functional anatomy, vascularization and serial section with MRI (3rd ed.). Springer, 2005.
  12. Dynamic Brain Sources of Visual Evoked Responses. Makeig S., [et al.]. Science, 2002. Vol. 295, pp. 690–694. doi:10.1126/science.1066168.
  13. EEG alpha and cortical inhibition in affective attention.Uusberg A., [et al.]. International Journal of Psychophysiology, 2013. Vol. 89, no. 1, pp. 26–36. doi:10.1016/j.ijpsycho.2013.04.020.
  14. EEG theta rhythm in infants and preschool children. Orekhova E.V., [et al.]. Clin Neurophysiol, 2006. Vol. 117, no. 5, pp. 1047–1062. doi:10.1016/j.clinph.2005.12.027.
  15. Event-related desynchronization in the alpha band and the processing of semantic information. Klimesch W., [et al.]. Brain Res Cogn Brain Res, 1997. Vol. 6, no. 2, pp. 83–94. doi:10.1016/S0926-6410(97)00018-9.
  16. Finding thalamic BOLD correlates to posterior alpha EEG. Liu Z., [et al.]. Neuroimage, 2012. Vol. 63, no. 3, pp. 1060–1069. doi: 10.1016/j.neuroimage.2012.08.025.
  17. Frontal-midline theta from the perspective of hippocampal "theta". Mitchell D.J., [et al.]. , 2008. Vol. 86, no. 3, pp. 156–85. doi: 10.1016/j.pneurobio.2008.09.005.
  18. Guillery R.W., Harting J.K. Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J Comp Neurol, 2003. Vol. 463, no. 4, pp. 360–371. doi: 10.1002/cne.10738.
  19. Händel B.F., Haarmeier T., Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci, 2011. Vol. 23, no. 9, pp. 2494–2502. doi:10.1162/jocn.2010.21557.
  20. Hasselmo M.E., Stern C.E. Theta rhythm and the encoding and retrieval of space and time. Neuroimage, 2014. Vol. 85, pp. 656–666. doi:10.1016/j.neuroimage.2013.06.022.
  21. Hindriks R., van Putten M.J.A.M. Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. Neuroimage, 2013. Vol. 70, pp. 150–163. doi:10.1016/j.neuroimage.2012.12.018.
  22. Hsieh L.-T., Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage, 2014. Vol. 85, pp. 721–729. doi:10.1016/j.neuroimage.2013.08.003.
  23. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. Sadaghiani S., [et al.]. J. Neurosci, 2010. Vol. 30, pp 10243–10250. doi:10.1523/JNEUROSCI.1004-10.2010.
  24. Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci, 2010. Vol. 4, pp. 186. doi: 10.3389/fnhum.2010.00186.
  25. Kahana M.J., Seelig D., Madsen J.R. Theta returns. Curr Opin Neurobiol, 2001. Vol. 11, no. 6, pp. 739–744. doi:10.1016/S0959-4388(01)00278-1.
  26. Kandel E.R. Cellular Mechanisms of Learning and the Biological Basis of Individuality. In: E. R. Kandel, J. H. Schwartz, and T. M. Jessell (Eds.). Principles of Neural Science, 4th Ed. McGraw-Hill Companies, Inc. 2000. pp. 1247–1279.
  27. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences, 2012. Vol. 16, no. 12, pp. 606–617. doi:10.1016/j.tics.2012.10.007.
  28. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: The inhibition/timing hypothesis. Brain Research Reviews, 2007. Vol. 53, pp. 63–88. doi:10.1016/j.brainresrev.2006.06.003.
  29. Kugler J., Laub M. «Puppet show» theta rhythm. Electroencephalogr Clin Neurophysiol, 1971. Vol. 31, pp. 532–533.
  30. Lega B.C., Jacobs J., Kahana M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 2012. Vol 22, issue 4, pp. 748–761. doi: 10.1002/hipo.20937.
  31. Maulsby R.L. An illustration of emotionally evoked theta rhythm in infancy: hedonic hypersynchrony. Electroencephalogr Clin Neurophysiol, 1971. Vol. 31, no. 2, pp. 157–165. doi:10.1016/0013-4694(71)90186-6.
  32. Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations. Bollimunta A., [et al.]. The Journal of Neuroscience, 2011. Vol. 31, no. 13, pp. 4935–4943; doi:10.1523/JNEUROSCI.5580-10.2011.
  33. Nyhus E., Curran T. Functional role of gamma and theta oscillations in episodic memory, Neuroscience & Biobehavioral Reviews, 2010. Vol. 34, no. 7, pp. 1023–1035. doi:10.1016/j.neubiorev.2009.12.014.
  34. Orekhova E.V., Stroganova T.A., Posikera I.N. Alpha activity as an index of cortical inhibition during sustained internally controlled attention in infants, Clin Neurophysiol, 2001. Vol. 112, no. 5, pp. 740–749. doi:10.1016/S1388-2457(01)00502-8.
  35. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Steriade M., [et al.]. Electroencephalogr Clin Neurophysiol, 1990. Vol. 76, no. 6, pp. 481–508. doi:10.1016/0013-4694(90)90001-Z.
  36. Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder. Hermens D.F., [et al.]. Pediatric Neurology, 2005. Vol. 32, no. 4, pp. 248–256. doi:10.1016/j.pediatrneurol.2004.11.009.
  37. Roux F., Uhlhaas P.J. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends in Cognitive Neuroscience, 2014. Vol. 18, no. 1, pp. 16–25. doi:10.1016/j.tics.2013.10.010.
  38. Sherman S.M., Guillery R.W. Functional connections of cortical areas: a new view from the thalamus. The MIT Press. 2013.
  39. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual–auditory cortices and default-mode network. Mayhew S.D., [et al.]. Neuroimage, 2013. Vol. 76, pp. 362–372. doi:10.1016/j.neuroimage.2013.02.070.
  40. Staudigl T., Hanslmayr S. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Current Biology, 2013. Vol. 23, no. 12, pp. 1101–1106. doi:10.1016/j.cub.2013.04.074.
  41. Stroganova T.A., Orekhova E.V. EEG and infant states. In: M. de Haan (Ed.), Infant EEG and Event-Related Potentials. Psychology Press, 2013. Pp. 251–287.
  42. Stroganova T.A., Orekhova E.V., Posikera I.N. Externally and internally controlled attention in infants: an EEG study. Int J Psychophysiol, 1998. Vol. 30, no. 3, pp. 339–351. doi:10.1016/S0167-8760(98)00026-9.
  43. Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation. Clarke V.R.J., [et al.]. J Neurosci, 2012 Vol. 32, no. 50, pp. 18215–26. doi:10.1523/JNEUROSCI.2327-12.2012.
  44. The effects of feeding on the electroencephalogram in 3- and 6-month-old infants. Lehtonen J., [et al.]. Psychophysiology, 2002. Vol. 39. no. 1, pp. 73–79. doi:10.1111/1469-8986.3910073.
  45. Theta band power in the human scalp EEG and the encoding of new information. Klimesch W., [et al.]. Neuroreport, 1996. Vol. 7. no. 7, pp. 1235–1240.
  46. Theta rhythms associated with sucking, crying, gazing and handling in infants. Futagi Y., [et al.]. Electroencephalogr Clin Neurophysiol, 1998. Vol. 106, no. 5, pp 392–399. doi:10.1016/S0013-4694(98)00002-9.
  47. Van der Molen M.W. Developmental changes in inhibitory processing: evidence from psychophysiological measures. Biological Psychology, 2000. Vol. 54, pp. 207–239.
  48. Vinogradova O.S., Kitchigina V.F., Zenchenko C.I. Pacemaker neurons of the forebrain medical septal area and theta rhythm of the hippocampus. Membr Cell Biol, 1998. Vol. 11, no. 6, pp. 715–725.
  49. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.Binder J.R., [et al.]. Cereb. Cortex, 2009. Vol. 19, no. 12, pp. 2767–2796. doi:10.1093/cercor/bhp055.
  50. Will and frontal theta activity. Kornhuber A.W., [et al.]. In: C.H.M. Brunia, A.W.K. Galliard, A. Kok (Eds.), Psychophysiological brain research. Tillburg: Tillburg University Press. 1990. Vol. 1, pp. 53–58.

Information About the Authors

Svetlana I. Orlova, PhD in Psychology, Senior Research Fellow, Moscow State University of Psychology, Moscow, Russia, ORCID: https://orcid.org/0000-0002-0284-5010, e-mail: zvita@list.ru

Metrics

Views

Total: 3340
Previous month: 45
Current month: 53

Downloads

Total: 10028
Previous month: 73
Current month: 49