Clinical Psychology and Special Education
2024. Vol. 13, no. 4, 29–50
doi:10.17759/cpse.2024130402
ISSN: 2304-0394 (online)
Age-related features of alpha rhythm dynamics: a brief review
Abstract
In this mini-review, the age-related features of alpha rhythm dynamics, its generation sources, and its connection to cognitive functions are discussed. The review focuses on a brief systematization of data regarding the alpha rhythm of human brain bioelectrical activity and its informativeness in determining the biological age of the human brain. The alpha rhythm is characterized by high individual stability and exhibits pronounced age-related dynamics in its U-shape. The peak frequency of the alpha rhythm increases from infancy to young adulthood and then decreases during brain aging. Discussions about the sources of alpha rhythm generation are still ongoing. Current data show a lack of a clear connection between the peak frequency of alpha rhythm and human cognitive abilities and intelligence. Parameters of the alpha rhythm, such as individual stability, genetic predisposition, and age-related characteristics, make it a promising marker for both normative development and brain aging in determining cognitive and biological age.
General Information
Keywords: EEG, alpha-rhythm, brain aging
Journal rubric: Theoretical Research
Article type: scientific article
DOI: https://doi.org/10.17759/cpse.2024130402
Funding. The work was carried out in the Laboratory of Convergent Studies of Cognitive Processes of the FSC PMI, established within the framework of the competition of the Ministry of Education and Science of Russia.
Received: 28.01.2024
Accepted:
For citation: Polikanova I.S., Mikheev I.N., Leonov S.V., Martynova O.V. Age-related features of alpha rhythm dynamics: a brief review [Elektronnyi resurs]. Klinicheskaia i spetsial'naia psikhologiia = Clinical Psychology and Special Education, 2024. Vol. 13, no. 4, pp. 29–50. DOI: 10.17759/cpse.2024130402. (In Russ., аbstr. in Engl.)
References
- Antipanova N.A., Sataeva A.M., Zhumabaeva G.T. Gendernyj podhod v razvitii rechi mal'chikov i devochek [Gender approach in the development of speech of boys and girls]. Mezhdunarodnyj zhurnal gumanitarnyh i estestvennyh nauk = International Journal of Humanities and Natural Sciences, No. 3, pp. 52–55. (In Russ.)
- Veraksa A.N., Kurilenko V.B., Novikova I.A. Fenomenologija detstva v sovremennyh kontekstah [Phenomenology of childhood in modern contexts]. Vestnik Rossijskogo universiteta druzhby narodov. Serija: Psihologija i pedagogika = RUDN Journal of Psychology and Pedagogics, Vol. 20, no. 3, pp. 419–430. DOI: 10.22363/2313-1683-2023-20-3-419-430 (In Russ., abstr. in Engl.)
- Novikova L.A. Vlijanie narushenij zrenija i sluha na funkcional'noe sostojanie mozga [Influence of visual and hearing impairments on the functional state of the brain]. Moscow: Prosveshhenie, 1966. 319 p. (In Russ.)
- Polikanova I. S., Balan P. V., Martynova O. V. Kognitivnyj i biologicheskij vozrast cheloveka: aktual'nye voprosy i novye perspektivy v issledovanii starenija [Cognitive and biological age of a person: current issues and new perspectives in the study of aging]. Teoreticheskaja i eksperimental'naja psihologija = Theoretical and Experimental Psychology, Vol. 5(4), pp. 106–120. DOI: 10.24412/2073-0861-2022-4-106-120 (In Russ., abstr. in Engl.)
- Sazonova E.A., Bykov E.V. Vlijanie elektromagnitnogo izluchenija nizkoj intensivnosti na bioelektricheskuju aktivnost' golovnogo mozga studentov-sportsmenov [Influence of electromagnetic radiation of low intensity on the bioelectrical activity of the brain of student-athletes]. Nauchno-sportivnyj vestnik Urala i Sibiri = Scientific and Sports Bulletin of the Urals and Siberia, No. 4, pp. 32–39. (In Russ.)
- Jakshina A.N. Raznovozrastnye gruppy v detskom sadu: vozmozhnosti i riski dlja razvitija doshkol'nikov [Different-age groups in kindergarten: opportunities and risks for the development of preschoolers]. Sovremennoe doshkol'noe obrazovanie = Modern preschool education, Vol. 109, no. 1, pp. 4–14. DOI: 10.24412/1997-9657-2022-1109-4-14 (In Russ., abstr. in Engl.)
- Abubaker M., Al Qasem W., Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Frontiers in Psychology, 2021. Vol. 12, pp. 756661. DOI: 3389/fpsyg.2021.756661
- Adrian E.D., Matthews B.H.C. The Berger rhythm: potential changes from the occipital lobes in man. Brain, 1934. Vol. 57(4), pp. 355–385. DOI: 1093/brain/57.4.355
- Angelakis E., Lubar J.F., Stathopoulou S., Kounios J. Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology, 2004. Vol. 115 (4), pp. 887–897. DOI: 1016/j.clinph.2003.11.034
- Anokhin A.P. Genetic psychophysiology: Advances, problems, and future directions. International Journal of Psychophysiology, 2014. Vol. 93 (2), pp. 173–197. DOI: 1016/j.ijpsycho.2014.04.003
- Anokhin A., Vogel F. EEG alpha rhythm frequency and intelligence in normal adults. Intelligence, 1996. Vol. 23 (1), pp. 1–14. DOI: 1016/S0160-2896(96)80002-X
- Barry R.J., Clarke A.R., McCarthy R. et al. Age and gender effects in EEG coherence: I. Developmental trends in normal children. Clinical neurophysiology, 2004. Vol. 115 (10), pp. 2252–2258. DOI: 1016/j.clinph.2004.05.004
- Barzegaran E., Vildavski V.Y., Knyazeva M.G. Fine structure of posterior alpha rhythm in human EEG: Frequency components, their cortical sources, and temporal behavior. Scientific Reports, 2017. Vol. 7 (1), pp. 1–12. DOI: 1038/s41598-017-08421-z
- Benninger C., Matthis, P., Scheffner D. EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalography and clinical neurophysiology, 1984. Vol. 57 (1), pp. 1–12. DOI: 1016/0013-4694(84)90002-6
- Berger H. Uber das Elektroenkephalogramm des Menschen. Archiv fur Psychiatrie und Nervenkrankheiten, 1929. Vol. 87, pp. 527–570. DOI: 1007/BF01797193
- Bertaccini R., Ellena G., Macedo-Pascual J. et al. Parietal alpha oscillatory peak frequency mediates the effect of practice on visuospatial working memory performance. Vision, 2022. Vol. 6 (2), pp. 30. DOI: 3390/vision6020030
- Bobby J.S. Peak alpha neurofeedback training on cognitive performance in elderly subjects. International Journal of Medical Engineering and Informatics, 2020. Vol. 12 (3), pp. 237–247. DOI: 1504/IJMEI.2020.107093
- Buzsaki G. Rhythms of the Brain. New York: Oxford University Press, 2006. 464 p. DOI: 1093/acprof:oso/9780195301069.001.0001
- Cellier D., Riddle J., Petersen I., Hwang K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental cognitive neuroscience, 2021. Vol. 50, p. 100969. DOI:1016/j.dcn.2021.100969
- Chiang A.K.I., Rennie C.J., Robinson P.A. et al. Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 2011. Vol. 122 (8), pp. 1505–1517. DOI: 1016/j.clinph.2011.01.040
- Clarke A.R., Barry R.J., McCarthy R., Selikowitz M. Age and sex effects in the EEG: development of the normal child. Clinical Neurophysiology, 2011. Vol. 112 (5), pp. 806–814. DOI: 1016/S1388-2457(01)00488-6
- Cuevas K., Bell M.A. EEG frequency development across infancy and childhood. In: P.A. Gable, M.W. Miller, E.M. Bernat (Eds). The Oxford Handbook of EEG Frequency, Oxford Library of Psychology. 2022. Pp. 293–323. DOI: 1093/oxfordhb/9780192898340.013.13
- D’Souza R.D., Wang Q., Ji W. et al. Hierarchical and nonhierarchical features of the mouse visual cortical network. Nature Communications, 2022. Vol. 13 (1), pp. 503. DOI: 1038/s41467-022-28035-y
- Da Silva F.H.L., Van Leeuwen W.S. The cortical source of the alpha rhythm. Neuroscience Letters, 1977. Vol. 6 (2-3), pp. 237–241. DOI: 1016/0304-3940(77)90024-6
- de Munck J.C., Gonçalves S.I., Huijboom L. et al. The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage, 2007. Vol. 35 (3), pp. 1142–1151. DOI: 1016/j.neuroimage.2007.01.022
- ElShafei H.A., Orlemann C., Haegens S. The impact of eye closure on anticipatory α activity in a tactile discrimination task. eNeuro, 2022. Vol. 9 (1). DOI: 1523/ENEURO.0412-21.2021
- Engemann D.A., Mellot A., Höchenberger R. et al. A reusable benchmark of brain-age prediction from M/EEG resting-state signals. Neuroimage, 2022. Vol. 262, p. 119521. DOI: 1016/j.neuroimage.2022.119521
- Freschl J., Al Azizi L., Balboa L. et al. The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. Developmental Cognitive Neuroscience, 2022. Vol. 57, pp. 101146. DOI: 1016/j.dcn.2022.101146
- Goetz P., Hu D., To P.D. et al. Scalp EEG markers of normal infant development using visual and computational approaches. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. Pp. 6528–6532. DOI: 1109/EMBC46164.2021.9629909
- Goljahan A., D’Avanzo C., Schiff S. et al. A novel method for the determination of the EEG individual alpha frequency. Neuroimage, 2012. Vol. 60, pp. 774–786. DOI: 1016/j.neuroimage.2011.12.001
- Gonçalves S.I., de Munck J.C., Pouwels P.J. et al. Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage, 2006. Vol. 30 (1), pp. 203–213. DOI: 1016/j.neuroimage.2005.09.062
- Grandy T.H., Werkle‐Bergner M., Chicherio C. et al. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology, 2013. Vol. 50 (6), pp. 570–582. DOI: 1111/psyp.12043
- Gratton G., Villa A.E., Fabiani M. et al. Functional correlates of a three-component spatial model of the alpha rhythm. Brain Research, 1992. Vol. 582 (1), pp. 159–162. DOI: 1016/0006-8993(92)90332-4
- Haegens S., Händel B.F., Jensen O. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. The Journal of Neuroscience, 2011. Vol. 31 (14), pp. 5197–5204. DOI: 1523/JNEUROSCI.5199-10.2011
- Halgren M., Ulbert I., Bastuji H. et al. The generation and propagation of the human alpha rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2019. Vol. 116 (47), pp. 23772–23782. DOI: 1073/pnas.1913092116
- Hinault T., Baillet S., Courtney S.M. Age-related changes of deep-brain neurophysiological activity. Cerebral Cortex, 2023. Vol. 33 (7), pp. 3960–3968. DOI: 1093/cercor/bhac319
- Hughes S.W., Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist, 2005. Vol. 11 (4), pp. 357–372. DOI: 1177/1073858405277450
- Iacono W.G., Malone S.M., Vrieze S.I. Endophenotype best practices. International Journal of Psychophysiology, 2017. Vol. 111, pp. 115–144. DOI: 1016/j.ijpsycho.2016.07.516
- Inamoto T., Ueda M., Ueno K. et al. Motor-related mu/beta rhythm in older adults: a comprehensive review. Brain Sciences, 2023. Vol. 13 (5), pp. 751. DOI: 3390/brainsci13050751
- Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 2012. Vol. 16 (12), pp. 606–617. DOI: 1016/j.tics.2012.10.007
- Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research. Brain Research Reviews, 1999. Vol. 29 (2-3), pp. 169–95. DOI: 1016/S0165-0173(98)00056-3
- Klimesch W. EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 1997. Vol. 26 (1-3), pp. 319–330. DOI: 1016/S0167-8760(97)00773-3
- Klimesch W., Doppelmayr M., Pachinger T., Russegger H. Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 1997. Vol. 6 (2), pp. 83–94. DOI: 1016/S0926-6410(97)00018-9
- Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain Topography, 1993. Vol. 5 (3), pp. 241–251. DOI: 1007/BF01128991
- Klimesch W., Doppelmayr M., Schimke H., Pachinger T. Alpha frequency, reaction time, and the speed of processing information. Journal of Clinical Neurophysiology, 1996. Vol. 13 (6), pp. 511–518. DOI: 1097/00004691-199611000-00006
- Knyazeva M.G., Barzegaran E., Vildavski V.Y., Demonet J.F. Aging of human alpha rhythm. Neurobiology of Aging, 2018. Vol. 69, pp. 261–273. DOI: 1016/j.neurobiolaging.2018.05.018
- Kondacs A., Szabó M. Long-term intra-individual variability of the background EEG in normal. Clinical Neurophysiology, 1999. Vol. 110 (10), pp. 1708–1716. DOI: 1016/S1388-2457(99)00122-4
- Kriegseis A., Hennighausen E., Rösler F., Röder B. Reduced EEG alpha activity over parieto-occipital brain areas in congenitally blind adults. Clinical Neurophysiology, 2006. Vol. 117 (7), pp. 1560–1573. DOI: 1016/j.clinph.2006.03.030
- Kumral D., Cesnaite E., Beyer F. et al. Relationship between regional white matter hyperintensities and alpha oscillations in older adults. Neurobiology of Aging, 2022. Vol. 112, pp. 1–11. DOI: 1016/j.neurobiolaging.2021.10.006
- Laufs H., Holt J.L., Elfont R. et al. Where the BOLD signal goes when alpha EEG leaves. Neuroimage, 2006. Vol. 31 (4), pp. 1408–1418. DOI: 1016/j.neuroimage.2006.02.002
- Leonardsen E.H., Vidal-Piñeiro D., Roe J.M. et al. Genetic architecture of brain age and its causal relations with brain and mental disorders. Molecular Psychiatry, 2023. Vol. 28 (7), pp. 3111–3120. DOI: 10.1038/s41380-023-02087-y
- Leybina A.V., Kashapov M.M. Understanding kindness in the Russian Context. Psychology in Russia: State of the Art, 2022. Vol. 15 (1), pp. 66–82. DOI: 10.11621/pir.2022.0105
- Manor R., Cheaha D., Kumarnsit E., Samerphob N. Age-related Deterioration of Alpha Power in Cortical Areas Slowing Motor Command Formation in Healthy Elderly Subjects. In Vivo, 2023. Vol. 37 (2), pp. 679–684. DOI: 21873/invivo.13128
- Markov N.T., Vezoli J., Chameau P. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. The Journal of Comparative Neurology, 2014. Vol. 522 (1), pp. 225–259. DOI: 10.1002/cne.23458
- Markovic A., Kaess M., Tarokh L. Gender differences in adolescent sleep neurophysiology: a high-density sleep EEG study. Scientific Reports, 2020. Vol. 10 (1), pp. 15935. DOI: 1038/s41598-020-72802-0
- Marosi E., Harmony T., Becker J. et al. Sex differences in EEG coherence in normal children. International Journal of Neuroscience, 1993. Vol. 72 (1-2), pp. 115–121. DOI: 3109/00207459308991628
- Marshall P.J., Bar-Haim Y., FoхA. Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 2002. Vol. 113 (8), pp. 1199–1208. DOI: 10.1016/S1388-2457(02)00163-3
- Martinović Z., Jovanović V., Ristanović D. EEG power spectra of normal preadolescent twins. Gender differences of quantitative EEG maturation. Neurophysiologie Clinique / Clinical Neurophysiology, 1998. 28 (3), pp. 231–248. DOI: 10.1016/S0987-7053(98)80114-7
- Mathewson K.E., Lleras A., Beck D.M. et al. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Frontiers in Psychology, 2011. Vol. 2, pp. 99. DOI: 3389/fpsyg.2011.00099
- Mejias J.F., Murray J.D., Kennedy H., Wang X.J. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Science Advances, 2016. Vol. 2 (11), art. e1601335. DOI: 1126/sciadv.1601335
- Modarres M., Cochran D., Kennedy D.N., Frazier J.A. Comparison of comprehensive quantitative EEG metrics between typically developing boys and girls in resting state eyes-open and eyes-closed conditions. Frontiers in Human Neuroscience, 2023. Vol. 17, p. 1237651. DOI: 3389/fnhum.2023.1237651
- Morosanova V.I., Fomina T.G., Bondarenko I.N. Conscious Self-Regulation as a Meta-Resource of Academic Achievement and Psychological Well-Being of Young Adolescents. Psychology in Russia: State of the Art, 2023 Vol. 16 (3), pp. 168–188. DOI:11621/pir.2023.0312
- Morrow A., Elias M., Samaha J. Evaluating the evidence for the functional inhibition account of alpha-band oscillations during preparatory attention. Journal of Cognitive Neuroscience, 2023. Vol. 35 (8), pp. 1195–1211. DOI: 1162/jocn_a_02009
- Ociepka M., Kałamała P., Chuderski A. High individual alpha frequency brains run fast, but it does not make them smart. Intelligence, 2022. Vol. 92, p. 101644. DOI: 1016/j.intell.2022.101644
- Pahor A., Jaušovec N. Making brains run faster: are they becoming smarter? The Spanish Journal of Psychology, 2016. Vol. 19. Art. E88. DOI: 1017/sjp.2016.83
- Ponomareva N.V., Andreeva T.V., Protasova M. et al. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Frontiers in Neuroscience, 2022. Vol. 16. Art. 931173. DOI: 3389/fnins.2022.931173
- Portnova G.V., Atanov M.S. Age-dependent changes of the EEG data: comparative study of correlation dimension D2, spectral analysis, peak alpha frequency and stability of rhythms. International Journal of Innovative Research in Computer Science & Technology (IJIRCST), 2016. Vol. 4 (2), pp. 56–61.
- Posthuma D., Neale M.C., Boomsma D.I., De Geus E.J.C. Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 2001. Vol. 31, pp. 567–579. DOI: 1023/A:1013345411774
- Radecke J.O., Fiene M., Misselhorn J. et al. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimulation, 2023. Vol. 16 (4), pp. 1047–1061. DOI: 1016/j.brs.2023.06.013
- Rempel S., Colzato L., Zhang W. et al. Distinguishing multiple coding levels in theta band activity during working memory gating processes. Neuroscience, 2021. Vol. 478, pp. 11–23. DOI: 1016/j.neuroscience.2021.09.025
- Roux F., Uhlhaas P.J. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends in Cognitive Sciences, 2014. Vol. 18 (1), pp. 16–25. DOI: 1016/j.tics.2013.10.010
- Saalmann Y.B., Pinsk M.A., Wang L. et al. The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 2012. Vol. 337(6095), pp. 753–756. DOI: 1126/science.1223082
- Schneider D., Herbst S.K., Klatt L.I., Wöstmann M. Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention. The European Journal of Neuroscience, 2022. Vol. 55 (11-12), pp. 3256–3265. DOI: 1111/ejn.15309
- Schubert J.T., Buchholz V.N., Föcker J. et al. Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention. NeuroImage, 2015. Vol. 117, pp. 417–428. DOI: 10.1016/j.neuroimage.2015.05.068
- Senzai Y., Fernandez-Ruiz A., Buzsáki G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron, 2019. Vol. 101 (3), pp. 500–513. Art. e5. DOI: 1016/j.neuron.2018.12.009
- Shaw J.C. The brain’s alpha rhythms and the mind. Amsterdam; Boston: Elsevier, 2003. 337 p.
- Shen G., Green H.L., Franzen R.E. et al. Resting-state activity in children: Replicating and extending findings of early maturation of alpha rhythms in autism spectrum disorder. Journal of Autism and Developmental Disorders, 2023. Vol. 54, pp. 1–16. DOI: 1007/s10803-023-05926-7
- Silva L.R., Amitai Y., Connors B.W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science, 1991. Vol. 251 (4992), pp. 432–435. DOI: 1126/science.1824881
- Soldatova G.U., Rasskazova E.I. Multitasking as a Personal choice of the Mode of activity in Russian children and adolescents: its relationship to experimental multitasking and its effectiveness. Psychology in Russia: State of the Art, 2022. Vol. 15 (2), pp. 113–123. DOI: 10.11621/pir.2022.0208
- Srinivasan R. Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clinical Neurophysiology, 1999. Vol. 110 (8), pp. 1351–1362. DOI: 1016/S1388-2457(99)00080-2
- Stroganova T.A., Orekhova E.V., Posikera I.N. EEG alpha rhythm in infants. Clinical Neurophysiology, 1999. Vol. 110 (6), pp. 997–1012. DOI: 1016/S1388-2457(98)00009-1
- Sumi Y., Miyamoto T., Sudo S. et al. Explosive sound without external stimuli following electroencephalography kappa rhythm fluctuation: A case report. Cephalalgia, 2021. Vol. 41 (13), pp. 1396–1401. DOI: 1177/03331024211021773
- Thorpe S.G., Cannon E.N., Fox N.A. Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clinical Neurophysiology, 2016. Vol. 127 (1), pp. 254–269. DOI: 1016/j.clinph.2015.03.004
- Thut G., Nietzel A., Brandt S.A., Pascual-Leone A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. The Journal of Neuroscience, 2006. Vol. 26 (37), pp. 9494–9502. DOI: 1523/JNEUROSCI.0875-06.2006
- Vidal-Pineiro D., Wang Y., Krogsrud S.K. et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. ELife, 2021. Vol. 10, art. e69995. DOI: 7554/eLife.69995
- Vijayan S., Kopell N.J. Thalamic model of awake alpha oscillations and implications for stimulus processing. Proceedings of the National Academy of Sciences of the United States of America, Vol. 109 (45), pp. 18553–18558. DOI: 10.1073/pnas.1215385109
- Vogt F., Klimesch W., Doppelmayr M. High-frequency components in the alpha band and memory performance. Journal of Clinical Neurophysiology, 1998. Vol. 15 (2), pp. 167–172. DOI: 1097/00004691-199803000-00011
- Vysata O., Kukal J., Prochazka A. et al. Age-related changes in the energy and spectral composition of EEG. Neurophysiology, 2012. Vol. 44 (1), pp. 63–67. DOI: 1007/s11062-012-9268-y
- Wisniewski M.G., Joyner C.N., Zakrzewski A.C., Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Human Brain Mapping, 2024. Vol. 45 (2), art. e26572. DOI: 1002/hbm.26572
- Wöstmann M., Alavash M., Obleser J. Alpha oscillations in the human brain implement distractor suppression independent of target selection. Journal of Neuroscience, 2019. Vol. 39 (49), pp. 9797–9805. DOI: 10.1523/JNEUROSCI.1954-19.2019
Information About the Authors
Metrics
Views
Total: 14
Previous month: 0
Current month: 14
Downloads
Total: 3
Previous month: 0
Current month: 3