Experimental Psychology (Russia)
2025. Vol. 18, no. 1, 181–199
doi:10.17759/exppsy.2025180112
ISSN: 2072-7593 / 2311-7036 (online)
Comparative analysis of working memory tasks in fMRI and MEG studies
Abstract
Context and relevance. To date, the study of brain correlates of working memory (WM) is associated with a number of theoretical as well as methodological difficulties. Firstly, substantially variable tasks are used to assess WM. Secondly, each neuroimaging method has its own characteristics and limitations. Objective. The aim of this paper was to systematize the tasks used to study the brain correlates of WM, as well as to analyze these paradigms in terms of the possibility and feasibility of their parallel use in fMRI and MEG studies, taking into account the specific requirements of both methods. Methods and materials. A literature search in the PubMed database identified 1,505 empirical studies published from 1995 to 2023 in which brain correlates of WM were studied using fMRI and/or MEG. The vast majority of them (1,398) used fMRI; 103 used MEG; 4 studies used both methods. Results. The analysis showed that the most frequently used tasks are the n-back task and the delayed match-to-sample task, including the Sternberg task. The considered tasks can use both verbal (e.g., letters, numbers, words, etc.) and non-verbal stimuli; they can be presented in different modalities (visual, auditory, and even tactile or vibrotactile). Conclusions. The features of these tasks and the possibility of their implementation in studies using fMRI and MEG are described.
General Information
Keywords: working memory, n-back task, Sternberg task, fMRI, MEG
Journal rubric: Methodology of Psychological Research
Article type: scientific article
DOI: https://doi.org/10.17759/exppsy.2025180112
Funding. The reported study was funded by Russian Science Foundation, project number 23-78-00008, https://rscf.ru/project/23-78-00008/ «Refined understanding of neural underpinnings of working memory in adult and ageing population through the combined use of fMRI and MEG data».
Received: 25.11.2024
Accepted:
For citation: Pechenkova E.V., Korolkova O.A., Panikratova Y.R., Pchelintseva M.E., Sinitsyn V.E. Comparative analysis of working memory tasks in fMRI and MEG studies. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2025. Vol. 18, no. 1, pp. 181–199. DOI: 10.17759/exppsy.2025180112. (In Russ., аbstr. in Engl.)
References
- Величковский, Б.Б. (2014). Тестирование рабочей памяти: от простого к сложному и снова к простому. Теоретическая и экспериментальная психология, 7(2), 133—142.
Velichkovsky, B.B. (2014). Testing working memory: from simple to complex and back to simple. Theoretical and experimental psychology, 7(2), 133—142. (In Russ.). - Ahveninen, J., Seidman, L.J., Chang, W.-T., Hämäläinen, M., Huang, S. (2017). Suppression of irrelevant sounds during auditory working memory. NeuroImage, 161, 1—8. https://doi.org/10.1016/j.neuroimage.2017.08.040
- Almodóvar-Payá, C., Guardiola-Ripoll, M., Giralt-López, M., Gallego, C., Salgado-Pineda, P., Miret, S., Salvador, R., Muñoz, M.J., Lázaro, L., Guerrero-Pedraza, A., Parellada, M., Carrión, M.I., Cuesta, M.J., Maristany, T., Sarró, S., Fañanás, L., Callado, L.F., Arias, B., Pomarol-Clotet, E., Fatjó-Vilas, M. (2022). NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches. International Journal of Molecular Sciences, 23(13), 7456. https://doi.org/10.3390/ijms23137456
- Archer, J.A., Lee, A., Qiu, A., Chen, S.-H.A. (2018). Working memory, age and education: A lifespan fMRI study. PLOS ONE, 13(3), e0194878. https://doi.org/10.1371/journal.pone.0194878
- Assem, M., Blank, I.A., Mineroff, Z., Ademoğlu, A., Fedorenko, E. (2020). Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence. Cortex, 131, 1—16. https://doi.org/10.1016/j.cortex.2020.06.013
- Baddeley, A., Hitch, G., Allen, R. (2020). A Multicomponent Model of Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 10—43). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0002
- Barrouillet, P., Camos, V. (2020). The Time-Based Resource-Sharing Model of Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 85—115). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0004
- Bauer, E., Sammer, G., Toepper, M. (2015). Trying to Put the Puzzle Together: Age and Performance Level Modulate the Neural Response to Increasing Task Load within Left Rostral Prefrontal Cortex. BioMed Research International, 2015, 1—11. https://doi.org/10.1155/2015/415458
- Bomyea, J., Stout, D.M., Simmons, A.N. (2019). Attenuated prefrontal and temporal neural activity during working memory as a potential biomarker of suicidal ideation in veterans with PTSD. Journal of Affective Disorders, 257, 607—614. https://doi.org/10.1016/j.jad.2019.07.050
- Bomyea, J., Taylor, C.T., Spadoni, A.D., Simmons, A.N. (2018). Neural mechanisms of interference control in working memory capacity. Human Brain Mapping, 39(2), 772—782. https://doi.org/10.1002/hbm.23881
- Brissenden, J.A., Tobyne, S.M., Osher, D.E., Levin, E.J., Halko, M.A., Somers, D.C. (2018). Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory. Current Biology, 28(21), 3364—3372. https://doi.org/10.1016/j.cub.2018.08.059
- Brown, C.A., Jiang, Y., Smith, C.D., Gold, B.T. (2018). Age and Alzheimer’s pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. Cortex, 104, 58—74. https://doi.org/10.1016/j.cortex.2018.04.006
- Chai, W.J., Abd Hamid, A.I., Abdullah, J.M. (2018). Working Memory From the Psychological and Neurosciences Perspectives: A Review. Frontiers in Psychology, 9, 401. https://doi.org/10.3389/fpsyg.2018.00401
- Chuderski, A. (2014). The relational integration task explains fluid reasoning above and beyond other working memory tasks. Memory & Cognition, 42(3), 448—463. https://doi.org/10.3758/s13421-013-0366-x
- Clark, C.M., Lawlor-Savage, L., Goghari, V.M. (2017). Functional brain activation associated with working memory training and transfer. Behavioural Brain Research, 334, 34—49. https://doi.org/10.1016/j.bbr.2017.07.030
- Cowan, N., Morey, C.C., Naveh-Benjamin, M. (2020). An Embedded-Processes Approach to Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 44—84). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0003
- Crowell, C.A., Davis, S.W., Beynel, L., Deng, L., Lakhlani, D., Hilbig, S.A., Palmer, H., Brito, A., Peterchev, A.V., Luber, B., Lisanby, S.H., Appelbaum, L.G., Cabeza, R. (2020). Older adults benefit from more widespread brain network integration during working memory. NeuroImage, 218, 116959. https://doi.org/10.1016/j.neuroimage.2020.116959
- Daneman, M., Carpenter, P.A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450—466.
- Daume, J., Graetz, S., Gruber, T., Engel, A.K., Friese, U. (2017). Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions. Scientific Reports, 7(1), 12585. https://doi.org/10.1038/s41598-017-12511-3
- Ducharme-Laliberté, G., Mellah, S., Boller, B., Belleville, S. (2022). More flexible brain activation underlies cognitive reserve in older adults. Neurobiology of Aging, 113(1), 63—72. https://doi.org/10.1016/j.neurobiolaging.2022.02.001
- Ecker, U.K.H., Oberauer, K., Lewandowsky, S. (2014). Working memory updating involves item-specific removal. Journal of Memory and Language, 74, 1—15. https://doi.org/10.1016/j.jml.2014.03.006
- Filbey, F.M., Slack, K.J., Sunderland, T.P., Cohen, R.M. (2006). Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEε4 in young healthy adults. NeuroReport, 17(15), 1585—1590. https://doi.org/10.1097/01.wnr.0000234745.27571.d1
- Friedman, N.P., Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186—204. https://doi.org/10.1016/j.cortex.2016.04.023
- Fujimaki, N., Hayakawa, T., Matani, A., Okabe, Y. (2004). Right-lateralized neural activity during inner speech repeated by cues. NeuroReport, 15(15), 2341—2345. https://doi.org/10.1097/00001756-200410250-00008
- Gaston, T.E., Allendorfer, J.B., Nair, S., Bebin, E.M., Grayson, L.P., Martin, R.C., Szaflarski, J.P. (2020). Effects of highly purified cannabidiol (CBD) on fMRI of working memory in treatment-resistant epilepsy. Epilepsy & Behavior, 112, 107358. https://doi.org/10.1016/j.yebeh.2020.107358
- Germano, C., Kinsella, G.J. (2005). Working Memory and Learning in Early Alzheimer’s Disease. Neuropsychology Review, 15(1), 1—10. https://doi.org/10.1007/s11065-005-3583-7
- Goddard, E., Contini, E.W., Irish, M. (2022). Exploring Information Flow from Posteromedial Cortex during Visuospatial Working Memory: A Magnetoencephalography Study. The Journal of Neuroscience, 42(30), 5944—5955. https://doi.org/10.1523/JNEUROSCI.2129-21.2022
- Gregory, M.D., Kippenhan, J.S., Callicott, J.H., Rubinstein, D.Y., Mattay, V.S., Coppola, R., Berman, K.F. (2019). Sequence Variation Associated with SLC12A5 Gene Expression Is Linked to Brain Structure and Function in Healthy Adults. Cerebral Cortex, 29(11), 4654—4661. https://doi.org/10.1093/cercor/bhy344
- Hahn, B., Robinson, B.M., Leonard, C.J., Luck, S.J., Gold, J.M. (2018). Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia. The Journal of Neuroscience, 38(39), 8378—8387. https://doi.org/10.1523/JNEUROSCI.0913-18.2018
- Hammar, Å., Neto, E., Clemo, L., Hjetland, G.J., Hugdahl, K., Elliott, R. (2016). Striatal hypoactivation and cognitive slowing in patients with partially remitted and remitted major depression. PsyCh Journal, 5(3), 191—205. https://doi.org/10.1002/pchj.134
- Harrington, D.L., Shen, Q., Vincent Filoteo, J., Litvan, I., Huang, M., Castillo, G.N., Lee, R. R., Bayram, E. (2020). Abnormal distraction and load-specific connectivity during working memory in cognitively normal Parkinson’s disease. Human Brain Mapping, 41(5), 1195—1211. https://doi.org/10.1002/hbm.24868
- Heinzel, S., Kaufmann, C., Grützmann, R., Klawohn, J., Riesel, A., Bey, K., Heilmann-Heimbach, S., Weinhold, L., Ramirez, A., Wagner, M., Kathmann, N. (2021). Polygenic risk for obsessive-compulsive disorder (OCD) predicts brain reacsponse during working memaory task in OCD, unaffected relatives, and healthy controls. Scientific Reports, 11(1), 18914. https://doi.org/10.1038/s41598-021-98333-w
- Hoffman, R.M., Trevarrow, M.P., Bergwell, H.R., Embury, C.M., Heinrichs-Graham, E., Wilson, T.W., Kurz, M.J. (2021). Cortical oscillations that underlie working memory are altered in adults with cerebral palsy. Clinical Neurophysiology, 132(4), 938—945. https://doi.org/10.1016/j.clinph.2020.12.029
- Huang, S., Seidman, L.J., Rossi, S., Ahveninen, J. (2013). Distinct cortical networks activated by auditory attention and working memory load. NeuroImage, 83, 1098—1108. https://doi.org/10.1016/j.neuroimage.2013.07.074
- Jia, K., Li, Y., Gong, M., Huang, H., Wang, Y., Li, S. (2021). Perceptual Learning beyond Perception: Mnemonic Representation in Early Visual Cortex and Intraparietal Sulcus. The Journal of Neuroscience, 41(20), 4476—4486. https://doi.org/10.1523/JNEUROSCI.2780-20.2021
- Jiang, Y., Li, J., Schmitt, F.A., Jicha, G.A., Munro, N.B., Zhao, X., Smith, C.D., Kryscio, R.J., Abner, E.L. (2021). Memory-Related Frontal Brainwaves Predict Transition to Mild Cognitive Impairment in Healthy Older Individuals Five Years Before Diagnosis. Journal of Alzheimer’s Disease, 79(2), 531—541. https://doi.org/10.3233/JAD-200931
- Koric, L., Volle, E., Seassau, M., Bernard, F.A., Mancini, J., Dubois, B., Pelissolo, A., Levy, R. (2012). How cognitive performance‐induced stress can influence right VLPFC activation: An fMRI study in healthy subjects and in patients with social phobia. Human Brain Mapping, 33(8), 1973—1986. https://doi.org/10.1002/hbm.21340
- Kustermann, T., Rockstroh, B., Miller, G.A., Popov, T. (2018). Neural network communication facilitates verbal working memory. Biological Psychology, 136, 119—126. https://doi.org/10.1016/j.biopsycho.2018.05.018
- Le, T.M., Borghi, J.A., Kujawa, A.J., Klein, D.N., Leung, H.-C. (2017). Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder. NeuroImage: Clinical, 14, 43—53. https://doi.org/10.1016/j.nicl.2017.01.004
- Lee, B., Cai, W., Young, C.B., Yuan, R., Ryman, S., Kim, J., Santini, V., Henderson, V.W., Poston, K.L., Menon, V. (2022). Latent brain state dynamics and cognitive flexibility in older adults. Progress in Neurobiology, 208, 102180. https://doi.org/10.1016/j.pneurobio.2021.102180
- Li, X., Yi, Z., Lv, Q., Chu, M., Hu, H., Wang, J., Zhang, J., Cheung, E.E.F., Chan, R.C.K. (2019). Clinical utility of the dual n-back task in schizophrenia: A functional imaging approach. Psychiatry Research: Neuroimaging, 284, 37—44. https://doi.org/10.1016/j.pscychresns.2019.01.002
- Logie, R.H., Belletier, C., Doherty, J.M. (2020). Integrating Theories of Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 389—430). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0014
- Luck, S.J., Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391—400. https://doi.org/10.1016/j.tics.2013.06.006
- Lugtmeijer, S., Geerligs, L., Tsvetanov, K.A., Mitchell, D.J., Cam-CAN, Campbell, K.L. (2023). Lifespan differences in visual short-term memory load-modulated functional connectivity. NeuroImage, 270, 119982. https://doi.org/10.1016/j.neuroimage.2023.119982
- Markiewicz, C.J., Bohland, J.W. (2016). Mapping the cortical representation of speech sounds in a syllable repetition task. NeuroImage, 141, 174—190. https://doi.org/10.1016/j.neuroimage.2016.07.023
- Marvel, C.L., Desmond, J.E. (2012). From storage to manipulation: How the neural correlates of verbal working memory reflect varying demands on inner speech. Brain and Language, 120(1), 42—51. https://doi.org/10.1016/j.bandl.2011.08.005
- Meier, T.B., Nair, V.A., Meyerand, M.E., Birn, R.M., Prabhakaran, V. (2014). The neural correlates of age effects on verbal—spatial binding in working memory. Behavioural Brain Research, 266, 146—152. https://doi.org/10.1016/j.bbr.2014.03.005
- Miró-Padilla, A., Bueichekú, E., Ávila, C. (2020). Locating neural transfer effects of n-back training on the central executive: a longitudinal fMRI study. Scientific Reports, 10(1), 5226. https://doi.org/10.1038/s41598-020-62067-y
- Miyake, A., Shah, P. (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (A. Miyake & P. Shah (eds.)). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139174909
- Mruczek, R.E.B., Killebrew, K.W., Berryhill, M.E. (2019). Individual differences reveal limited mixed-category effects during a visual working memory task. Neuropsychologia, 122, 1—10. https://doi.org/10.1016/j.neuropsychologia.2018.12.005
- Mukherjee, P., Hartanto, T., Iosif, A.-M., Dixon, J.F., Hinshaw, S.P., Pakyurek, M., van den Bos, W., Guyer, A. E., McClure, S. M., Schweitzer, J. B., Fassbender, C. (2021). Neural basis of working memory in ADHD: Load versus complexity. NeuroImage: Clinical, 30, 102662. https://doi.org/10.1016/j.nicl.2021.102662
- Noguchi, Y., Kakigi, R. (2020). Temporal codes of visual working memory in the human cerebral cortex. NeuroImage, 222, 117294. https://doi.org/10.1016/j.neuroimage.2020.117294
- Oberauer, K. (2020). Towards a Theory of Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 116—149). Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0005
- Osaka, M., Kaneda, M., Azuma, M., Yaoi, K., Shimokawa, T., Osaka, N. (2021). Capacity differences in working memory based on resting state brain networks. Scientific Reports, 11(1), 19502. https://doi.org/10.1038/s41598-021-98848-2
- Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: an fMRI study. NeuroImage, 18(3), 789—797. https://doi.org/10.1016/S1053-8119(02)00032-0
- Othman, E.A., Yusoff, A.N., Mohamad, M., Abdul Manan, H., Abd Hamid, A.I., Giampietro, V. (2020). Hemispheric Lateralization of Auditory Working Memory Regions During Stochastic Resonance: An fMRI Study. Journal of Magnetic Resonance Imaging, 51(6), 1821—1828. https://doi.org/10.1002/jmri.27016
- Pavlov, Y.G., Kotchoubey, B. (2022). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, 59(5), e13735. https://doi.org/10.1111/psyp.13735
- Pennock, I.M.L., Schmidt, T.T., Zorbek, D., Blankenburg, F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Human Brain Mapping, 42(9), 2778—2789. https://doi.org/10.1002/hbm.25402
- Peterburs, J., Blevins, L.C., Sheu, Y.-S., Desmond, J.E. (2019). Cerebellar contributions to sequence prediction in verbal working memory. Brain Structure and Function, 224(1), 485—499. https://doi.org/10.1007/s00429-018-1784-0
- Peterburs, J., Liang, Y., Cheng, D.T., Desmond, J.E. (2021). Sensory acquisition functions of the cerebellum in verbal working memory. Brain Structure and Function, 226(3), 833—844. https://doi.org/10.1007/s00429-020-02212-5
- Postle, B.R. (2020). Cognitive Neuroscience of Visual Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 333—357). Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0012
- Schmidt, T.T., Wu, Y., Blankenburg, F. (2017). Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans. The Journal of Neuroscience, 37(40), 9771—9777. https://doi.org/10.1523/JNEUROSCI.1167-17.2017
- Serrano, N., López-Sanz, D., Bruña, R., Garcés, P., Rodríguez-Rojo, I. C., Marcos, A., Crespo, D.P., Maestú, F. (2020). Spatiotemporal Oscillatory Patterns During Working Memory Maintenance in Mild Cognitive Impairment and Subjective Cognitive Decline. International Journal of Neural Systems, 30(1), 1950019. https://doi.org/10.1142/S0129065719500199
- Sobczak-Edmans, M., Ng, T.H.B., Chan, Y.C., Chew, E., Chuang, K.H., Chen, S.H.A. (2016). Temporal dynamics of visual working memory. NeuroImage, 124(Pt A), 1021—1030. https://doi.org/10.1016/j.neuroimage.2015.09.038
- Soloveva, M.V, Jamadar, S.D., Velakoulis, D., Poudel, G., Georgiou-Karistianis, N. (2020). Brain compensation during visuospatial working memory in premanifest Huntington’s disease. Neuropsychologia, 136, 107262. https://doi.org/10.1016/j.neuropsychologia.2019.107262
- Stäblein, M., Storchak, H., Ghinea, D., Kraft, D., Knöchel, C., Prvulovic, D., Bittner, R.A., Reif, A., Oertel-Knöchel, V. (2019). Visual working memory encoding in schizophrenia and first-degree relatives: neurofunctional abnormalities and impaired consolidation. Psychological Medicine, 49(1), 75—83. https://doi.org/10.1017/S003329171800051X
- Steffener, J., Habeck, C., Franklin, D., Lau, M., Yakoub, Y., Gad, M. (2022). Subjective difficulty in a verbal recognition-based memory task: Exploring brain-behaviour relationships at the individual level in healthy young adults. NeuroImage, 257, 119301. https://doi.org/10.1016/j.neuroimage.2022.119301
- Sternberg, S. (1966). High-Speed Scanning in Human Memory. Science, 153(3736), 652—654. https://doi.org/10.1126/science.153.3736.652
- Swanson, H.L., Alloway, T.P. (2012). Working memory, learning, and academic achievement. In K.R. Harris, S. Graham, T. Urdan, C.B. McCormick, G.M. Sinatra, J. Sweller (Eds.), APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues. (Vol. 1, pp. 327—366). American Psychological Association. https://doi.org/10.1037/13273-012
- Tang, R., Etzel, J.A., Kizhner, A., Braver, T.S. (2021). Frontoparietal pattern similarity analyses of cognitive control in monozygotic twins. NeuroImage, 241, 118415. https://doi.org/10.1016/j.neuroimage.2021.118415
- Tüdös, Z., Hok, P., Hrdina, L., Hluštík, P. (2014). Modality effects in paced serial addition task: Differential responses to auditory and visual stimuli. Neuroscience, 272, 10—20. https://doi.org/10.1016/j.neuroscience.2014.04.057
- van’t Westeinde, A., Zimmermann, M., Messina, V., Karlsson, L., Padilla, N., Lajic, S. (2020). First Trimester DEX Treatment Is Not Associated with Altered Brain Activity During Working Memory Performance in Adults. The Journal of Clinical Endocrinology & Metabolism, 105(11), e4074—e4082. https://doi.org/10.1210/clinem/dgaa611
- Wianda, E., Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and Behavior, 9(4), e01263. https://doi.org/10.1002/brb3.1263
- Wijeakumar, S., Spencer, J. (2020). A Dynamic Field Theory of Visual Working Memory. In R. Logie, V. Camos, N. Cowan (Eds.), Working Memory: The state of the science (pp. 358—388). Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198842286.003.0013
- Winston, G.P., Stretton, J., Sidhu, M.K., Symms, M.R., Thompson, P.J., Duncan, J.S. (2013). Structural correlates of impaired working memory in hippocampal sclerosis. Epilepsia, 54(7), 1143—1153. https://doi.org/10.1111/epi.12193
- Witt, S. T., Drissi, N.M., Tapper, S., Wretman, A., Szakács, A., Hallböök, T., Landtblom, A.-M., Karlsson, T., Lundberg, P., Engström, M. (2018). Evidence for cognitive resource imbalance in adolescents with narcolepsy. Brain Imaging and Behavior, 12(2), 411—424. https://doi.org/10.1007/s11682-017-9706-y
- Yang, P., Fan, C., Wang, M., Fogelson, N., Li, L. (2017). The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study. NeuroImage, 157, 351—363. https://doi.org/10.1016/j.neuroimage.2017.06.031
- Ye, Z., Zhang, G., Li, S., Zhang, Y., Xiao, W., Zhou, X., Münte, T.F. (2020). Age differences in the fronto-striato-parietal network underlying serial ordering. Neurobiology of Aging, 87, 115—124. https://doi.org/10.1016/j.neurobiolaging.2019.12.007
- Zhao, W., Chen, X., Zhang, Q., Du, B., Deng, X., Ji, F., Xiang, Y.-T., Wang, C., Dong, Q., Chen, C., Li, J. (2020). Effect of ZNF804A gene polymorphism (rs1344706) on the plasticity of the functional coupling between the right dorsolateral prefrontal cortex and the contralateral hippocampal formation. NeuroImage: Clinical, 27, 102279. https://doi.org/10.1016/j.nicl.2020.102279
Information About the Authors
Metrics
Web Views
Whole time: 40
Previous month: 0
Current month: 40
PDF Downloads
Whole time: 16
Previous month: 0
Current month: 16
Total
Whole time: 56
Previous month: 0
Current month: 56