Analysis of brain activity during configuration learning using magnetoencephalography

2

Abstract

Context and relevance. This study investigates the brain encoding of complex stimuli during configurational associative learning in humans. Behavior based on the perception of complex signals provides high adaptability of human activity. Yet, knowledge about the involvement of the cerebral cortex in binding stimulus elements into a perceived holistic configuration remains incomplete and contradictory. Methods and materials. We used four elemental stimuli of different modalities (two visual and two auditory), and two complex multimodal stimuli composed of the same elemental stimuli. Two stimuli (one complex and one elemental stimulus) were paired with negative reinforcement (electrocutaneous stimulation). The task of the subject was to press a button if they anticipated an electrocutaneous stimulation after the presentation of each stimulus: the stimuli were presented in a pseudo-random order. Twenty-nine volunteers took part in the study. Results. The results of the study showed that reinforcement of a complex stimulus was accompanied by a significant increase in the power of theta oscillations in response to that stimulus. In addition, it was found that encoding configural association engaged theta oscillations to a greater extent compared to elemental association. These effects were found in localizations over prefrontal cortex, left dorsolateral frontal regions, right temporal regions, and posterior parieto-occipital regions. Conclusions. We hypothesize that this phenomenon is not only a consequence of the involvement of the hippocampus in the encoding of a complex stimulus, but also indicates an active interaction between the hippocampus and associative areas of the neocortex during learning.

General Information

Keywords: configurational learning, elemental learning, complex stimuli, elemental stimuli, theta oscillations, magnetoencephalography

Journal rubric: Psychophysiology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2025180109

Funding. The study was supported by the Russian Science Foundation (RSF), project number 23-78-00010.

Acknowledgements. The study was carried out at the Unique Scientific Facility "Center for Neurocognitive Research (MEG Center)" of MSUPE. The study was carried out with the support of the Interdisciplinary Scientific and Educational School of Lomonosov State University "Brain, Cognitive Systems, Artificial Intelligence".

Received: 06.08.2024

Accepted:

For citation: Denisova E.V., Poznyak L.A., Pultsina K.I., Tretyakova V.D., Chernyshev B.V. Analysis of brain activity during configuration learning using magnetoencephalography. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2025. Vol. 18, no. 1, pp. 138–154. DOI: 10.17759/exppsy.2025180109. (In Russ., аbstr. in Engl.)

References

  1. Ивашкина, О.И., Торопова, К.А., Рощина, М.А., Анохин, К.В. (2020). Формирование и извлечение ассоциативной памяти на комплексный сигнал у мышей: специфическое участие нейронов области СА1 гиппокампа. Журнал высшей нервной деятельности им. И.П. Павлова, 70(3), 327—341.
    Ivashkina, O.I., Toropova, K.A., Roshchina, M.A., Anokhin, K.V. (2020). Formirovanie i izvlechenie assotsiativnoi pamyati na kompleksnyi signal u myshei: spetsificheskoe uchastie neironov oblasti SA1 gippokampa. Zhurnal vysshei nervnoi deyatel'nosti im. I.P. Pavlova, 70(3), 327—341.
  2. Чернышев, Б.В., Ушаков, В.Л., Позняк, Л.А. (2024). Поиск нейрофизиологических механизмов конфигурационного обучения. Журнал высшей нервной деятельности им. И.П. Павлова, 74(2), 149—165.
    Chernyshev, B.V., Ushakov, V.L., Poznyak, L.A. (2024). Poisk neirofiziologicheskikh mekhanizmov konfiguratsionnogo obucheniya. Zhurnal vysshei nervnoi deyatel'nosti im. I.P. Pavlova, 74(2), 149—165.
  3. Baeuchl, C., Meyer, P., Hoppstädter, M., Diener, C., Flor, H. (2015). Contextual fear conditioning in humans using feature-identical contexts. Neurobiology of Learning and Memory, 121, 1—11. https://doi.org/1016/j.nlm.2015.03.001
  4. Bronfman, Z.Z., Ginsburg, S., Jablonka, E.М. (2016). The Transition to Minimal Consciousness through the Evolution of Associative Learning. Frontiers in Psychology, 7. https://doi.org/3389/fpsyg.2016.01954
  5. Buzsáki, G., McKenzie, S., Davachi, L. (2022). Neurophysiology of Remembering. Annual Review of Psychology, 73, 187—215. https://doi.org/1146/annurev-psych-021721-110002
  6. Cashdollar, N., Malecki, U., Rugg-Gunn, F.J., Duncan, J.S., Lavie, N., Duzel, E. (2009). Hippocampus-dependent and -independent theta-networks of active maintenance. Proceedings of the National Academy of Sciences, 106(48), 20493—20498. https://doi.org/1073/pnas.0904823106
  7. Duncan, K., Doll, B.B., Daw, N.D., Shohamy, D. (2018). More Than the Sum of Its Parts: A Role for the Hippocampus in Configural Reinforcement Learning. Neuron, 98(3), 645—657. https://doi.org/10.1016/j.neuron.2018.03.042
  8. Feinberg, T.E., Mallatt, J. (2016). The nature of primary consciousness. A new synthesis. Consciousness and Cognition, 43, 113—127. https://doi.org/10.1016/j.concog.2016.05.009
  9. Fuentemilla, L., Penny, W.D., Cashdollar, N., Bunzeck, N., Düzel, E. (2010). Theta-Coupled Periodic Replay in Working Memory. Current Biology, 20(7), 606—612. https://doi.org/10.1016/j.cub.2010.01.057
  10. Ginsburg, S., Jablonka, E. (2019). The evolution of the sensitive soul: learning and the origins of consciousness. Cambridge, MA: MIT Press.
  11. Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, L., Hämäläinen, M.S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446—460. https://doi.org/10.1016/j.neuroimage.2013.10.027
  12. Jensen, K.T., Hennequin, G., Mattar, M.G. (2024). A recurrent network model of planning explains hippocampal replay and human behavior. Nature Neuroscience. https://doi.org/10.1038/s41593-024-01675-7
  13. Joensen, B.H., Bush, D., Vivekananda, U., Horner, A.J., Bisby, J.A., Diehl, B., Miserocchi, A., McEvoy, A.W., Walker, M.C., Burgess, N. (2023). Hippocampal theta activity during encoding promotes subsequent associative memory in humans. Cerebral Cortex, 33(13), 8792—8802. https://doi.org/10.1093/cercor/bhad162
  14. Karakaş, S. (2020). A review of theta oscillation and its functional correlates. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2020.04.008
  15. Kimchi, R. (1994). The Role of Wholistic/Configural Properties versus Global Properties in Visual Form Perception. Perception, 23(5), 489—504. https://doi.org/10.1068/p230489
  16. Lisman, J., Buzsaki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Bull., 34(5), 974—980.
  17. Luck, S.J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT press.
  18. Maren, S., Aharonov, G., Fanselow, M.S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 88(2), 261—274. https://doi.org/10.1016/S0166-4328(97)00088-0
  19. Maren, S., Phan, K.L., Liberzon, I. (2013). The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14(6), 417—428. https://doi.org/10.1038/nrn3492
  20. Miller, R. (2013). Cortico-hippocampal interplay and the representation of contexts in the brain. Springer Science & Business Media.
  21. Nardin, M., Kaefer, K., Stella, F., Csicsvari, J. (2023). Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions. Cell Reports, 42(9), 113015. https://doi.org/10.1016/j.celre 2023.113015
  22. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353—383. https://doi.org/10.1016/0010-0285(77)90012-3
  23. Olsen, R.K., Rondina, Ii R., Riggs, L., Meltzer, J.A., Ryan, J.D. (2013). Hippocampal and neocortical oscillatory contributions to visuospatial binding and comparison. Journal of Experimental Psychology: General, 142(4), 1335—1345. https://doi.org/10.1037/a0034043
  24. Poch, C., Fuentemilla, L., Barnes, G.R., Düzel, E. (2011). Hippocampal Theta-Phase Modulation of Replay Correlates with Configural-Relational Short-Term Memory Performance. The Journal of Neuroscience, 31(19), 7038—7042. https://doi.org/10.1523/jneurosci.6305-10.2011.
  25. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128—2148. https://doi.org/10.1016/j.clinph.2007.04.019
  26. Razorenova, A.M., Chernyshev, B.V., Nikolaeva, A.Y., Butorina, A.V., Prokofyev, A.O., Tyulenev, N.B., Stroganova, T.A. (2020). Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults. Frontiers in Neuroscience, 14, https://doi.org/10.3389/fnins.2020.00895
  27. Razran, G. (1971). Mind in evolution: An East-West synthesis of learned behavior and cognition. Houghton Mifflin.
  28. Rudy, J.W., Huff, N.C., Matus-Amat P. (2004). Understanding contextual fear conditioning: insights from a two-process model. Neuroscience & Biobehavioral Reviews, 28(7), 675—685. https://doi.org/10.1016/j.neubiorev.2004.09.004
  29. Rudy, J.W., Sutherland, R.J. (1995). Configural association theory and the hippocampal formation: An appraisal and reconfiguration. Hippocampus, 5(5), 375—389. https://doi.org/10.1002/hipo.450050502
  30. Sakimoto, Y., Hattori, M., Takeda, K., Okada, K., Sakata, S. (2013). Hippocampal theta wave activity during configural and non-configural tasks in rats. Experimental Brain Research, 225(2), 177—185. https://doi.org/10.1007/s00221-012-3359-2
  31. Sakimoto, Y., Okada, K., Takeda, K., Sakata, S. ( 2013). Transient Decline in Hippocampal Theta Activity during the Acquisition Process of the Negative Patterning Task. PLOS ONE, 8(7), e70756. https://doi.org/10.1371/journal.pone.0070756
  32. Sakimoto, Y., Sakata, S. (2015). The transient decline in hippocampal theta power during response inhibition in a positive patterning task. NeuroReport, 26(14), 833—837. https://doi.org/10.1097/wnr.0000000000000432
  33. Sehlmeyer, C., Schöning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., Konrad, C. (2009). Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review. PLOS ONE, 4(6), https://doi.org/10.1371/journal.pone.0005865
  34. Stout, D.M., Glenn, D.E., Acheson, D.T., Simmons, A.N., Risbrough, V.B. (2019). Characterizing the neural circuitry associated with configural threat learning. Brain Research, 1719, 225—234. https://doi.org/10.1016/j.brainres.2019.06.003
  35. Stout, D.M., Glenn, D.E., Acheson, D.T., Spadoni, A.D., Risbrough, V.B., Simmons, A.N. (2018). Neural measures associated with configural threat acquisition. Neurobiology of Learning and Memory, 150, 99—106. https://doi.org/10.1016/j.nlm.2018.03.012
  36. Sutherland, R.J., Rudy, J.W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology, 17(2), 129—144. https://doi.org/10.3758/BF03337828

Information About the Authors

Elena V. Denisova, 2th Year Student of the Master's degree in Biology, Lomonosov Moscow State University (MSU), Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-3350-6476, e-mail: denisovaev@my.msu.ru

Larisa A. Poznyak, laboratory Researcher, Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0009-0001-1671-0264, e-mail: tobeandnottobe@yandex.ru

Kristina I. Pultsina, Candidate of Science (Psychology), Researcher, Center for Neurocognitive Research, Moscow State University of psychology and education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0001-7128-2832, e-mail: pultsinaki@mgppu.ru

Vera D. Tretyakova, Candidate of Science (Chemistry), Researcher, Center for Neurocognitive Research; Senior Lecturer, Department of General Psychology, Institute of Experimental Psychology, Moscow State University of psychology and education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-1632-6817, e-mail: TretyakovaVD@mgppu.ru

Boris V. Chernyshev, Candidate of Science (Biology), Head of Center for Neurocognitive Research (MEG-Center), Moscow State University of Psychology & Education, Associate Professor, Department of Psychology, National Research University Higher School of Economics; Associate Professor of the Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-8267-3916, e-mail: b_chernysh@mail.ru

Metrics

 Web Views

Whole time: 15
Previous month: 0
Current month: 15

 PDF Downloads

Whole time: 2
Previous month: 0
Current month: 2

 Total

Whole time: 17
Previous month: 0
Current month: 17