The Anti-Depression computer program: results of an effectiveness study

3

Abstract

Context and relevance. This study is aimed at evaluating the efficiency of the iCognito Anti-Depression computer program, which combines cognitive-behavioural therapy, mindfulness, and problem-solving therapy methods, and is delivered by a conversational agent (chatbot) in Russian language via a smartphone application. The program was designed for mass usage to fill in the gap of insufficient mental health service provision in countries with large Russian-speaking population, such as Russia, Ukraine, Belarus and Kazakhstan. Methods and materials. A randomized wait-list controlled trial was conducted on a sample with moderate or severe depression (N = 73). The intervention consisted of fully automatized work with a computer program for 2 weeks. Results. Сompleting the iCognito Anti-Depression program is associated with decreased depression, stress, anxiety, rumination, and sleep disturbance, as well as increased level of self-compassion, mindfulness, positive problem orientation, self-efficacy, subjective well-being, and optimism; with the interaction effect being insignificant for reflection and negative problem orientation. Conclusions. Both the efficiency study and user demand demonstrate that mass computer programs such as “Anti-Depression” are able to expand access to basic psychological assistance internationally.

General Information

Keywords: depression, intervention, chatbot, mobile application, CCBT

Journal rubric: Tools

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2025180114

Received: 27.12.2023

Accepted:

For citation: Troitskaya O.V., Batkhina A.A. The Anti-Depression computer program: results of an effectiveness study. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2025. Vol. 18, no. 1, pp. 222–240. DOI: 10.17759/exppsy.2025180114. (In Russ., аbstr. in Engl.)

References

  1. Arias-de la Torre, J., Vilagut, G., Ronaldson, A., Serrano-Blanco, A., Martín, V., Peters, M., Valderas, J.M., Dregan, A., Alonso, J. (2021). Prevalence and variability of current depressive disorder in 27 European countries: a population-based study. Lancet Public Health, 6(10), e729—e738. https://doi.org/10.1016/S2468-2667(21)00047-5. URL: https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(21)00047-5/fulltext
  2. Arkowitz, H., & Burke, B.L. (2008). Motivational interviewing as an integrative framework for the treatment of depression. In: H. Arkowitz, H.A. Westra, W.R. Miller, S. Rollnick (Eds.), Motivational interviewing in the treatment of psychological problems(pp. 145—272). New York: The Guilford Press.
  3. Andersson, G., Wagner, B., Cuijpers, P. (2016). ICBT for Depression. In: N. Lindefors, G. Andersson, (Ed.), Guided Internet-Based Treatments in Psychiatry (pp. 17—32). Springer International Publishing.
  4. Andrews, G., Cuijpers, P., Craske, M.G., McEvoy, P., Titov, N. (2010). Computer therapy for anxiety and depressive disorders is effective, acceptable and practical health care: a meta-analysis. PLoS One, 5(10), e13196. https://doi.org/10.1371/journal.pone.0013196
  5. Baumeister, H., Reichler, L., Munzinger, M., Lin, J. (2014). The impact of guidance on Internet- based mental health interventions — A systematic review. Internet Interventions, 1(4), 205—215. https://doi.org/10.1016/j.invent.2014.08.003
  6. Beck, A., Rush, J., Brian, S. (1987). Cognitive Therapy of Depression. New York: The Guilford Press.
  7. Berger, T., Krieger, T., Sude, K., Meyer, B., Maercker, A. (2018). Evaluating an e-mental health program ("deprexis") as adjunctive treatment tool in psychotherapy for depression: Results of a pragmatic randomized controlled trial. J Affect Disord., 227, 455—462. https://doi.org/10.1016/j.jad.2017.11.021
  8. Bickmore, T., Gruber, A., Picard, R. (2005). Establishing the computer-patient working alliance in automated health behavior change interventions. Patient Educ Couns., 59(1), 21—30. https://doi.org/10.1016/j.pec.2004.09.008
  9. Bickmore, T., Schulman, D., Yin L. (2010). Maintaining Engagement in Long-term Interventions with Relational Agents. Applied artificial intelligence, 24(6), 648—666.
  10. Burns, D. (2012). Feeling Good: The New Mood Therapy. New York:
  11. Caldeira, C., Chen, Y., Chan, L., Pham, V., Chen, Y., Zheng, K. (2017). Mobile apps for mood tracking: an analysis of features and user reviews. AMIA Annu Symp Proc., 16, 495—504.
  12. Cohen, S., Kamarck, T., Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385—396. https://doi.org/10.2307/2136404
  13. Carlbring, P., Andersson, G., Cuijpers, P., Riper, H., Hedman-Lagerlöf, E. (2018). Internet-based vs face-to-face cognitive behavior therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis. Cogn Behav Ther., 47(1), 1—18. https://doi.org/10.1080/16506073.2017.1401115
  14. Cohen, D. (1988). Statistical Power Analysis for the Behavioral Science. Hillsdale, NJ: Lawrence Erlbaum Associates.
  15. Cook, S., Kudryavtsev, A.V., Bobrova, N., Saburova, L., Denisova, D., Malyutina, S., Lewis, G., Leon, D.A. (2020). Prevalence of symptoms, ever having received a diagnosis and treatment of depression and anxiety, and associations with health service use amongst the general population in two Russian cities. BMC Psychiatry, 20(1), 537.
  16. Cramer, E.M., Bock, R.D. (1966). Chapter VIII: Multivariate Analysis. Review of Educational Research, 36(5), 604—617.
  17. D’Zurilla, T., Nezu, A., Maydeu-Olivares, A. (2002). Social Problem-Solving Inventory- Revised (SPSI-R): Manual. North Tonawanda, NY: Multi-Health Systems.
  18. Darcy, A., Daniels, J., Salinger, D., Wicks, P., Robinson, A. (2021). Evidence of Human-Level Bonds Established With a Digital Conversational Agent: Cross-sectional, Retrospective Observational Study. JMIR Form Res., 5(5), e27868. https://doi.org/10.2196/27868
  19. Diener, E. (1984). Subjective well-being. Psychological Bulletin, 95(3), 542—575. https://doi.org/10.1037/0033-2909.95.3.542
  20. Eells, T.D., Barrett, M.S., Wright, J.H., Thase, M. (2014).Computer-assisted cognitive-behavior therapy for depression. Psychotherapy (Chicago, Ill.)51(2), 191—197. https://doi.org/10.1037/a0032406
  21. Ellis, A. (2001). Overcoming Destructive Beliefs, Feelings and Behaviors: New Directions for Rational Emotive Behavioral Therapy. New York: Prometheus Books.
  22. Eysenbach, G. (2005). The Law of Attrition. J Med Internet Res., 7(1), e11. https://doi.org/10.2196/jmir.7.1.e11
  23. Feinman, R.D. (2009). Intention-to-treat. What is the question? Nutrition & metabolism, 6, 1. https://doi.org/10.1186/1743-7075-6-1
  24. Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., Sarris J. (2017).The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials. World psychiatry: official journal of the World Psychiatric Association (WPA)16(3), 287—298. https://doi.org/10.1002/wps.20472
  25. Fitzpatrick, K.K., Darcy, A., Vierhile, M. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health, 4(2), e19. https://doi.org/10.2196/mental.7785
  26. Fleming, T., Bavin, L., Lucassen, M., Stasiak, K., Hopkins, S., Merry, S. (2018).Beyond the trial: systematic review of real-world uptake and engagement with digital self-help interventions for depression, low mood, or anxiety. J Med Internet Res., 20(6), e199. https://doi.org/10.2196/jmir.9275
  27. Foroushani, P.S., Schneider, J., Assareh, N. (2011). Meta-review of the effectiveness of computerised CBT in treating depression. BMC Psychiatry, 11, 131. https://doi.org/10.1186/1471-244X-11-131
  28. Gaffney, H., Mansell, W., Tai, S. (2019). Conversational Agents in the Treatment of Mental Health: Mixed-Method Systematic Review. JMIR Ment Health, 6(10), e14166. https://doi.org/10.2196/14166
  29. Gilbert, P. (2019). The Compassionate Mind (Compassion Focused Therapy). London: Robinson.
  30. Global Health Data Exchange (2019). Depressive Disorders Prevalence. URL: https://ghdx.healthdata.org/gbd-results-tool
  31. Gupta, S.K. (2011). Intention-to-treat concept: A review. Perspectives in clinical research, 2(3), 109—112. https://doi.org/10.4103/2229-3485.83221
  32. Huberty, C.J., Petoskey, M.D. (2000). Multivariate analysis of variance and covariance. In: H.E.A. Tinsley, S.D. Brown (Ed.), Handbook of applied multivariate statistics and mathematical modeling (pp. 183—208). New York: Academic Press. https://doi.org/10.1016/B978-012691360-6/50008-2
  33. Huguet, A., Rao, S., McGrath, P.J., Wozney, L., Wheaton, M., Conrod, J., Rozario, S. (2016). A Systematic Review of Cognitive Behavioral Therapy and Behavioral Activation Apps for Depression. PLoS One, 11(5), e0154248. https://doi.org/10.1371/journal.pone.0154248
  34. Inkster, B., Sarda, S., Subramanian, V. (2018).An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed- methods study. J Mhealth Uhealth, 6(11), e12106. https://doi.org/10.2196/12106
  35. Integration of Mental Health into Primary Healthcare and Community-Based Service Platforms in Ukraine (2017). URL: https://documents1.worldbank.org/curated/en/310711509516280173/pdf/120767-WP-Revised-WBGUkraineMentalHealthFINALwebvpdfnov.pdf (viewed:04.2022).
  36. Jenkins, R., Lancashire, S., McDaid, D., Samyshkin, Y., Green, S., Watkins, J., Potasheva, A., Nikiforov, A., Bobylova, Z., Gafurov, V., Goldberg, D., Huxley, P., Lucas, J., Purchase, N., Atun, R. (2007). Mental health reform in the Russian Federation: an integrated approach to achieve social inclusion and recovery. Bull World Health Organ., 85(11), 858—866.  https://doi.org/10.2471/BLT.06.039156
  37. Kanter, J.W., Busch, A.M., Rusch, L.C. (2009). Behavioral Activation: Distinctive Features. London: Routledge. https://doi.org/10.4324/9780203876060
  38. Karyotaki, E., Kleiboer, A., Smit, F., et al. (2015). Predictors of treatment dropout in self-guided web-based interventions for depression: an “individual patient data” meta-analysis. Psychol Med., 45(13), 2717—2726. https://doi.org/10.1017/S0033291715000665
  39. Kirschenbaum, H. (2013). Values Clarification in Counseling and Psychotherapy: Practical Strategies for Individual and Group Settings. Oxford: Oxford University Press.
  40. Krasnov, V.N., Gurovich, I. (2012). History and current condition of Russian psychiatry. International Review of Psychiatry, 24(4), 328—333. https://doi.org/10.3109/09540261.2012.694857
  41. Kroenke, K., Spitzer, R.L., Williams, J.B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine,16(9), 606—613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
  42. Lackner, R.J., Moore, M.T., Minerovic, J., Fresco, D.M. (2015). Explanatory flexibility and explanatory style in treatment- seeking clients with Axis I psychopathology. Cognitive Therapy and Research39(6), 736—743. https://doi.org/10.1007/s10608-015-9702-8
  43. Linardon, J., Fuller-Tyszkiewicz, M. (2020). Attrition and adherence in smartphone-delivered interventions for mental health problems: a systematic and meta-analytic review // Journal of consulting and clinical psychology88(1), 1—13. https://doi.org/10.1037/ccp0000459
  44. Markowitz, J.C., Weissman, M.M. (2004). Interpersonal psychotherapy: principles and applications. World psychiatry: official journal of the World Psychiatric Association (WPA),3(3), 136—139.
  45. Marshall, J.M., Dunstan, D.A., Bartik, W. (2019). The digital psychiatrist: in search of evidence- based apps for anxiety and depression. Front Psychiatry, 10, https://doi.org/10.3389/fpsyt.2019.00831
  46. Marshall, J.M., Dunstan, D.A., Bartik, W. (2020). Effectiveness of Using Mental Health Mobile Apps as Digital Antidepressants for Reducing Anxiety and Depression: Protocol for a Multiple Baseline Across-Individuals Design. JMIR research protocols,9(7), e17159. https://doi.org/10.2196/17159
  47. McCarter, T. (2008). Depression overview. American health & drug benefits,1(3), 44—51.
  48. McManus, S., Bebbington, P.E., Jenkins, R., Brugha, T. (2016). Mental health and wellbeing in England: Adult Psychiatric Morbidity Survey 2014. Leed, UK: NHS Digital.
  49. Muñoz, R.F. (2010). Using evidence-based internet interventions to reduce health disparities worldwide. J Med Internet Res.,12(5), e60. https://doi.org/10.2196/jmir.1463
  50. Neff K., Germer C. (2018). The Mindful Self-Compassion Workbook: A Proven Way to Accept Yourself, Build Inner Strength, and Thrive. New York: The Guilford Press.
  51. Nersessova, K.S., Jurcik, T., Hulsey, T.L. (2019). Differences in beliefs and attitudes toward Depression and Schizophrenia in Russia and the United States. International Journal of Social Psychiatry,65(5), 388—398. https://doi.org/10.1177/0020764019850220
  52. Nezu, A., Nezu, C., D'Zurilla, T. (2012). Problem-Solving Therapy: A Treatment Manual. New York: Springer Publishing Company.
  53. Pedrosa, I., Celis-Atenas, K., Suárez-Álvarez, J., García-Cueto, E., Muñiz, J. (2015). Cuestionario para la evaluación del optimismo: Fiabilidad y evidencias de validez. Terapia psicológica, 33(2), 127—138. http://doi.org/10.4067/S0718-48082015000200007
  54. Pereira, J., Díaz, Ó. (2019). Using Health Chatbots for Behavior Change: A Mapping Study. Journal of Medical Systems,43(5), 135. https://doi.org/10.1007/s10916-019-1237-1
  55. Qu, C., Sas, C., Daudén Roquet, C., Doherty, G. (2020). Functionality of Top-Rated Mobile Apps for Depression: Systematic Search and Evaluation. JMIR Ment Health,7(1), e15321. https://doi.org/10.2196/15321
  56. Quirke, E., Klymchuk, V., Suvalo, O., Bakolis, I., Thornicroft, G. (2021). Mental health stigma in Ukraine: Cross-sectional survey. Global mental health (Cambridge, England),8, e11. https://doi.org/10.1017/gmh.2021.9 URL: https://www.cambridge.org/core/journals/global-mental-health/article/mental-health-stigma-in-ukraine-crosssectional- survey/DD66E53BE822249C13472454A9D5E89E
  57. Raes, F., Pommier, E., Neff, K.D., Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical psychology & psychotherapy, 18(3), 250—255. https://doi.org/10.1002/cpp.702
  58. Ranganathan, P., Pramesh, C.S., Aggarwal, R. (2016). Common pitfalls in statistical analysis: Intention-to-treat versus per-protocol analysis. Perspectives in clinical research, 7(3), 144—146. https://doi.org/10.4103/2229-3485.184823
  59. Richards, D., Richardson, T. (2012). Computer-based psychological treatments for depression: a systematic review and meta-analysis. Clin Psychol Rev., 32, 329—342. https://doi.org/1016/j.cpr.2012.02.004
  60. Russian Public Opinion Fund Survey. (2019). Psychological Support and Psychologists. (In Russ.). URL: https://fom.ru/Obraz-zhizni/14183 (viewed: 09.2021).
  61. SAMHSA (2018). Key substance use and mental health indicators in the United States: Results from the 2017 National Survey on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. URL: https://www.samhsa.gov/data/
  62. Schwarzer, R., Jerusalem, M. (1995). Generalized Self-Efficacy scale. In: J. Weinman, S. Wright, M. Johnston (Ed.), Measures in health psychology: A user’s portfolio. Causal and control beliefs (pp. 35—37). Windsor, UK: NFER-NELSON.
  63. Segal, Z.V., Williams, J.M.G., Teasdale, J.D. (2012). Mindfulness-Based Cognitive Therapy for Depression (2nd ed.). New York: The Guilford Press.
  64. Skokauskas, N., Chonia, E., van Voren, R., Delespaul, P., Germanavicius, A., Keukens, R., Pinchuk, I., Schulze, M., Koutsenok, I., Herrman, H., Javed, A., Sartorius, N., Thornicroft, G. (2020). Ukrainian mental health services and World Psychiatric Association Expert Committee recommendations. The Lancet Psychiatry,7(9), 738—740. https://doi.org/10.1016/S2215-0366(20)30344-8
  65. So, M., Yamaguchi, S., Hashimoto, S., Sado, M., Furukawa, T.A., McCrone, P. (2013). Is computerised CBT really helpful for adult depression? A meta-analytic re-evaluation of CCBT for adult depression in terms of clinical implementation and methodological validity. BMC Psychiatry,13, 113. https://doi.org/10.1186/1471-244X-13-113
  66. Spitzer, R.L., Kroenke, K., Williams, J.B., Löwe, B. (2006). A brief measure for assessing generalized anxiety disorder: the GAD-7. Archives of internal medicine,166(10), 1092—1097. https://doi.org/10.1001/archinte.166.10.1092
  67. Stawarz, K., Preist, C., Tallon, D., Wiles, N., Coyle, D. (2018). User Experience of Cognitive Behavioral Therapy Apps for Depression: An Analysis of App Functionality and User Reviews. J Med Internet Res.,20(6), e10120. https://doi.org/10.2196/10120
  68. Thase, M.E., Wright, J.H., Eells, T.D., Barrett, M.S., Wisniewski, S.R., Balasubramani, G.K., McCrone, P., Brown, G.K. (2018). Improving the efficiency of psychotherapy for depression: computer-assisted versus standard CBT. Am J Psychiatry, 175(3), 242—250. https://doi.org/10.1176/appi.ajp.2017.17010089
  69. Torous, J., Nicholas, J., Larsen, M.E., Firth, J., Christensen, H. (2018). Clinical review of user engagement with mental health smartphone apps: evidence, theory and improvements. Evid Based Ment Health, 21(3), 116—119. https://doi.org/10.1136/eb-2018-102891
  70. Treynor, W., Gonzalez, R., Nolen-Hoeksema S. (2003). Rumination Reconsidered: A Psychometric Analysis. Cognitive Therapy and Research, 27(3), 247—259. https://doi.org/10.1023/A:1023910315561
  71. Wagner, B., Horn, A.B., Maercker, A. (2014). Internet-based versus face-to-face cognitive-behavioral intervention for depression: A randomized controlled non-inferiority trial. J Affect Disord.,152-154, 113—121. https://doi.org/10.1016/j.jad.2013.06.032
  72. Watkins E. (2016). Rumination-Focused Cognitive-Behavioral Therapy for Depression. New York: The Guilford Press.
  73. Webb, C.A., Rosso, I.M., Rauch, S.L. (2017). Internet-Based Cognitive-Behavioral Therapy for Depression: Current Progress and Future Directions. Harvard review of psychiatry, 25(3), 114—122. https://doi.org/10.1097/HRP.0000000000000139
  74. Winkler, P., Krupchanka, D., Roberts, T., Kondratova, L., Machů, V., Höschl, C., Sartorius, N., Van Voren, R., Aizberg, O., Bitter, I., Cerga-Pashoja, A., Deljkovic, A., Fanaj, N., Germanavicius, A., Hinkov, H., Hovsepyan, A., Ismayilov, F.N., Ivezic, S.S., Jarema, M., Jordanova, V., … Thornicroft, G. (2017). A blind spot on the global mental health map: a scoping review of 25 years' development of mental health care for people with severe mental illnesses in central and eastern Europe. The Lancet Psychiatry,4(8), 634—642. https://doi.org/10.1016/S2215-0366(17)30135-9
  75. World bank database (2020). GDP per capita. URL: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=RU-UA-KZ-BY-EU&name_desc=true (viewed:04.2022).
  76. WHO (2021). Bulletin of the World Health Organization, 85(11), 821—900. URL: https://www.who.int/bulletin/volumes/85/11/06-039156/en/
  77. World Health Organization (2020). Ukraine — WHO Special Initiative for Mental Health. URL: https://www.who.int/publications/m/item/ukraine-who-special-initiative-for-mental-health (viewed:04.2022).
  78. World Health Organization database (2021). Crude Suicide Mortality (per 100,000 population). URL: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates# (viewed: 07.2021).
  79. Wright, J.H., Owen, J.J., Richards, D., Eells, T.D., Richardson, T., Brown, G.K., Barrett, M., Rasku, M.A., Polser, G., Thase, M.E. (2019). Computer-assisted cognitive-behavior therapy for depression: a systematic review and meta-analysis. J Clin Psychiatry, 80(2), 18r12188. https://doi.org/10.4088/JCP.18r12188
  80. Wright, J.H., Mishkind, M. (2020). Computer-Assisted CBT and Mobile Apps for Depression: Assessment and Integration Into Clinical Care. Focus (American Psychiatric Publishing), 18(2), 162—168. https://doi.org/10.1176/appi.focus.20190044
  81. Wu, A., Scult, M.A., Barnes, E.D., Betancourt, J.A., Falk, A., Gunning, F.M. (2021). Smartphone apps for depression and anxiety: a systematic review and meta-analysis of techniques to increase engagement. NPJ digital medicine, 4(1), 20. https://doi.org/10.1038/s41746-021-00386-8
  82. Yu, L., Buysse, D.J., Germain, A., Moul, D.E., Stover, A., Dodds, N.E., Johnston, K.L., Pilkonis, P.A. (2011). Development of short forms from the PROMIS™ sleep disturbance and Sleep-Related Impairment item banks. Behavioral sleep medicine, 10(1), 6—24. https://doi.org/10.1080/15402002.2012.636266

Information About the Authors

Olga V. Troitskaya, Candidate of Science (Policy), Director, Research Principal, Research and Technology Organization, Innovative Company - Resident of Skolkovo Technopark iCognito, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-6813-7631, e-mail: troitskaya@icognito.app

Anastasia A. Batkhina, Candidate of Science (Psychology), Clinical Psychologist, Head of R&D, Research and Technology Organization, Innovative Company - Resident of Skolkovo Technopark iCognito, HSE University, Academic Director, Doctoral School of Psychology, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-0397-296X, e-mail: batkhina.anastasia@gmail.com

Metrics

 Web Views

Whole time: 22
Previous month: 0
Current month: 22

 PDF Downloads

Whole time: 3
Previous month: 0
Current month: 3

 Total

Whole time: 25
Previous month: 0
Current month: 25