Effects of heterogeneous contexts on the visual search task under implicit learning conditions

12

Abstract

Objective. The study tested the assumption that heterogeneity (low degree of similarity) of visual context elements facilitates the search for a given target under conditions of implicit internalization of contextual configurations. A visual search task was used: subjects had to detect a target (a black Landolt ring with a right or left gap) among distractor configurations of two types (similar and dissimilar to the target). Methods and materials. The subjects were divided into experimental and control groups. The primary distractors in both groups were black Landolt rings with a 45º, 135º, 225º, or 315º tear angle. The type of additional distractors differed: figures (triangles, squares, crosses, and stars) of different colors were demonstrated in the experimental group, and white Landolt rings were demonstrated in the control group. In both groups, some distractor configurations (contexts) were repeated throughout the procedure, while others were changed. The main procedure included 24 blocks (32 tasks per block), which were grouped into 6 epochs (4 blocks per epoch). The effects of implicit contextual internalization were assessed by the results of the last epoch. Results. The most pronounced contextual influence on the efficiency of target retrieval was found when the configurations of the main and additional distractors were maintained. When only the configuration of the additional distractors was repeated, target retrieval in both experimental and control groups took longer than when both contexts were changed. Conclusions. This result demonstrates the effect of contextual interference. The paper provides an interpretation of this effect.

General Information

Keywords: visual search, contextual cues, context heterogeneity, implicit learning, contextual interference

Journal rubric: Psychology of Perception

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2025180101

Funding. The research was supported by the Russian Science Foundation grant No. 23-28-01040, https://rscf.ru/project/23-28-01040/.

Received: 17.06.2024

Accepted:

For citation: Burmistrov S.N., Agafonov A.Y., Zolotukhina A.A., Kozlov D.D. Effects of heterogeneous contexts on the visual search task under implicit learning conditions. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2025. Vol. 18, no. 1, pp. 4–21. DOI: 10.17759/exppsy.2025180101. (In Russ., аbstr. in Engl.)

References

  1. Агафонов, А.Ю., Золотухина, А.А., Крюкова, А.П., Бурмистров, С.Н. (2023). Контекстуальная опосредованность когнитивной деятельности. Экспериментальная психология, 16(3), 98—120. https://doi.org/10.17759/exppsy.2023160307
    Agafonov, A.Yu., Zolotukhina, A.A., Kryukova, A.P., Burmistrov, S.N. (2023). Contextual Mediation of Cognitive Activity. Experimental Psychology (Russia), 16(3), 98—120. (In Russ.; abstr. in Engl.). https://doi.org/10.17759/exppsy.2023160307
  2. Солсо, Р. (2006). Когнитивная психология. 6-е изд. СПб.: Питер.
    Solso, R. (2006). Cognitive psychology. 6th ed. Saint Petersburg: Piter. (In Russ.).
  3. Фаликман, М.В. (2010). Эффекты превосходства слова в зрительном восприятии и внимании. Психологический журнал, 31(1), 32—40
    Falikman, M.V. (2010). Effects of word superiority in visual perception and attention. Psychological Journal, 31(1), 32—40. (In Russ.).
  4. Филиппова, М.Г. (2016). Неосознаваемая двойственность изображений: экспериментальные проявления негативного выбора. Петербургский психологический журнал, 16, 1—22.
    Filippova, M.G. (2016). Unconscious Ambiguity of Images: Experimental Manifestation of Negative Selection. St. Petersburg psychological journal, 16, 1—22. (In Russ.; abstr. in Engl.).
  5. Четвериков, А.А. (2015). Линейные модели со смешанными эффектами в когнитивных исследованиях. Российский журнал когнитивной науки, 2(1), 41—51.
    Chetverikov, A.A. (2015). Linear Mixed Effects Regression in Cognitive Studies. Russian Journal of Cognitive Science, 2(1), 41—51. (In Russ.; abstr. in Engl.).
  6. Aderman, D., Smith, E.E. (1971). Expectancy as a determinant of functional units in perceptual recognition. Cognitive Psychology, 2(1), 117—129. https://doi.org/10.1016/0010-0285(71)90005-3
  7. Baars, B.J. (1983). Conscious Contents Provide the Nervous System with Coherent, Global Information. In: R.J. Davidson, G.E. Schwartz, D. Shapiro (Ed.), Consciousness and Self-Regulation. Volume 3: Advances in Research and Theory ( 41—79). Boston: Springer. https://doi.org/10.1007/978-1-4615-9317-1_2
  8. Baars, B.A. (1988). A cognitive theory of consciousness. California: Cambridge University Press.
  9. Bar, M., Ullman, S. (1996). Spatial context in recognition. Perception, 25(3), 343—352. https://doi.org/10.1068/p250343
  10. Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1—48. https://doi.org/10.18637/jss.v067.i01
  11. Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77—80. https://doi.org/10.1126/science.177.4043.77
  12. Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive psychology, 14(2), 143—177. https://doi.org/10.1016/0010-0285(82)90007-X
  13. Brooks, D.I., Rasmussen, I.P. (2012). Hollingworth A. The nesting of search contexts within natural scenes: evidence from contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1406—1418. https://doi.org/10.1037/a0019257
  14. Chun, M.M., Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive psychology, 36(1), 28—71. https://doi.org/10.1006/cogp.1998.0681
  15. Chun, M.M., Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360—365. https://doi.org/10.1111/1467-9280.00168
  16. Chun, M.M., Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224—234. https://doi.org/10.1037/0278-7393.29.2.224
  17. Cohen, A., Ivry, R.I., Keele, S.W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 17—30. https://doi.org/10.1037/0278-7393.16.1.17
  18. Curran, T., Keele, S.W. (1993) Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 189—202. https://doi.org/10.1037/0278-7393.19.1.189
  19. Donk, M., Van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19(7), 733—739. https://doi.org/10.1111/j.1467-9280.2008.02149.x
  20. Duncan, J., Humphreys, G.W. (1989). Visual search and stimulus similarity. Psychological Revie, 96(3), 433—458. https://doi.org/10.1037/0033-295X.96.3.433
  21. Fox, J., Weisberg, S. (2019). An R Companion to Applied Regression. 3 ed. Thousand Oaks: Sage publications inc.
  22. Frensch, P.A., Wenke, D., Rünger, D. (1999). A secondary tone-counting task suppresses expression of knowledge in the serial reaction task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 260—274. https://doi.org/10.1037/0278-7393.25.1.260
  23. Geyer, T., Shi, Z., Müller, H.J. (2010). Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 515—532. https://doi.org/10.1037/a0017448
  24. Hunt, R.R., Lamb, C.A. (2001). What causes the isolation effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(6), 1359—1366. https://doi.org/10.1037/0278-7393.27.6.1359
  25. Hunt, R.R., Worthen, J.B. (2006). Distinctiveness and memory. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195169669.001.0001
  26. Jiang, Y., Chun, M.M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology, 54(4), 1105—1124. https://doi.org/10.1080/713756001
  27. Jiang, Y., Leung, A.W. (2005). Implicit learning of ignored visual context. Psychonomic bulletin & review, 12(1), 100—106. https://doi.org/10.1167/4.8.188
  28. Jiang, Y.V., Sisk, C.A. (2020). Contextual cueing. In: S. Pollmann (Ed.), Spatial learning and attention guidance (pp. 59—72). Humana Press; Springer Nature. https://doi.org/10.1007/7657_2019_19
  29. Kawahara, J.I. (2003). Contextual cueing in 3D layouts defined by binocular disparity. Visual cognition, 10(7), 837—852. https://doi.org/10.1080/13506280344000103
  30. Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1—26. https://doi.org/10.18637/jss.v082.i13
  31. Lenth, R. (2023). Emmeans [Review of Emmeans]. Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.5. https://cran.r-project.org/package=emmeans
  32. Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of memory and language, 94, 305—315. https://doi.org/10.1016/j.jml.2017.01.001
  33. Olson, I.R., Chun, M.M. (2002). Perceptual constraints on implicit learning of spatial context. Visual cognition, 9(3), 273—302. https://doi.org/10.1080/13506280042000162
  34. PoSIt | the Open-Source Data science Company. (2025, January 23). Posit. https://posit.co/
  35. R: The R Project for Statistical Computing. (n.d.). https://www.r-project.org/
  36. Saffran, J.R., Newport, E.L., Aslin, R.N., Tunick, R.A. (1997). Barrueco, S. Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological science, 8(2), 101—105. https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
  37. Schmidt, S.R. (1991). Can we have a distinctive theory of memory? Memory & Cognition, 19(6), 523—542. https://doi.org/10.3758/BF03197149
  38. Seitz, A.R., Watanabe, T. (2003). Is subliminal learning really passive? Nature, 422(6927), https://doi.org/10.1038/422036a
  39. Stadler, M.A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 674—685. https://doi.org/10.1037/0278-7393.21.3.674
  40. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta psychologica, 135(2), 77—99. https://doi.org/10.1016/j.actpsy.2010.02.006
  41. Tipper, S.P., Cranston, M. (1985). Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. The Quarterly Journal of Experimental Psychology, 37(4), 591—611. https://doi.org/10.1080/14640748508400921
  42. Tulving, E., Rosenbaum, R.S. (2006). What do explanations of the distinctiveness effect need to explain? In: R.R. Hunt, J.B. Worthen (Ed.), Distinctiveness and memory ( 407—423). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195169669.003.0018
  43. Ullman, S. (2000). High-level vision: Object recognition and visual cognition. MIT press.
  44. Van Zoest, W., Donk, M., Theeuwes, J. (2004). The Role of Stimulus-Driven and Goal-Driven Control in Saccadic Visual Selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746—759. https://doi.org/10.1037/0096-1523.30.4.749
  45. Venables, W.N., Ripley, B.D. (2002). Modern Applied Statistics with S. Fourth Edition.Y.: Springer. https://doi.org/10.1007/b97626
  46. Von Restorff, H. (1933). Über die wirkung von bereichsbildungen im spurenfeld. Psychologische Forschung, 18, 299—342. https://doi.org/10.1007/BF02409636
  47. Watanabe, T., Nanez, J.E., Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(6858), 844—848. https://doi.org/10.1038/35101601
  48. Wolfe, J., Horowitz, T. (2017). Five factors that guide attention in visual search. Nature Human Behavior, 1, 1—8. https://doi.org/10.1038/s41562-017-0058
  49. Wolfe, J.M., Utochkin, I.S. (2019). What is a preattentive feature? Current opinion in psychology, 29, 19—26. https://doi.org/10.1016/j.copsyc.2018.11.005
  50. Zang, X., Jia, L., Müller, H.J., Shi, Z. (2015). Invariant spatial context is learned but not retrieved in gaze-contingent tunnel-view search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 807—819. https://doi.org/10.1037/xlm0000060

Information About the Authors

Sergey N. Burmistrov, Senior Lecturer of the Department of General Psychology, Samara National Research University, Samara, Russian Federation, ORCID: https://orcid.org/0000-0002-6567-6779, e-mail: burm33@mail.ru

Andrey Y. Agafonov, Doctor of Psychology, Professor, Head of the Department of General Psychology, Deputy Dean for Scientific Work of the Faculty of Psychology of the Social Sciences and Humanities Institute, Samara National Research University, Samara, Russian Federation, ORCID: https://orcid.org/0000-0003-1546-605X, e-mail: aa181067@yandex.ru

Anna A. Zolotukhina, Assistant, Department of General Psychology, Samara National Research University named after Academician S.P. Korolev, Samara, Russian Federation, ORCID: https://orcid.org/0000-0002-5311-9393, e-mail: morozova.86@mail.ru

Dmitrii D. Kozlov, Senior Lecturer, School of Psychology, HSE University, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0001-9768-5584, e-mail: ddkozlov@gmail.com

Metrics

 Web Views

Whole time: 21
Previous month: 0
Current month: 21

 PDF Downloads

Whole time: 12
Previous month: 0
Current month: 12

 Total

Whole time: 33
Previous month: 0
Current month: 33