Simple neuro network algorithms for evaluating latent links of younger adolescent’s psychological characteristics

559

Abstract

The artificial neural networks (ANN) for the psycho-diagnostics data analyzing is used. It is shown that the training of a simple ANN of direct propagation, as the problem of nonlinear multi-parameter optimization, allows to carry out the vertical system analysis and to assess the latent, non-linear relationship between different level’s psychological characteristics (the system of relationships, motivational characteristics, personality traits, intelligence, the type of nervous system). The detection of such links using the traditional for psychology the correlative ore factor analysis is difficult. Quantitative criteria are proposed for evaluating the quality of ANN algorithms, which are based on a scattering diagram and the statistical distribution of errors in the learning and testing of a neural network. As an example, the data of psycho-diagnostics of younger adolescents are analyzed. The proposed algorithms and criteria made it possible to detect latent links between psychological characteristics, to evaluate the ratio of psychological level-based indicators.

General Information

Keywords: younger adolescents, psychological characteristics, latent links, artificial neural networks, neural network algorithms

Journal rubric: Research Methods

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2019120210

For citation: Slavutskaya E.V., Abrukov V.S., Slavutskii L.A. Simple neuro network algorithms for evaluating latent links of younger adolescent’s psychological characteristics. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2019. Vol. 12, no. 2, pp. 131–144. DOI: 10.17759/exppsy.2019120210. (In Russ., аbstr. in Engl.)

References

  1. Abrukov V.S., Abrukov S.V., Smirnov A.V., Karlovich E.V. Data mainin v naychnih issledovaniah [Data mainin in scientific researches]. Conference: Nanostructured materials and соnverting devices- NANOSOLAR-2013, [Elektronnyi resurs] Cheboksary, 2013.//URL:https://www.researchgate.net/ publication/270452415_Data_mining_v_naucnyh_issledovaniah (Accessed: 17.09.2018).
  2. Aksenov S.V., Novoseltsev V.B. Organizatsiya i ispol’zovaniye neyronnykh setey (metody i tekhnologii) [Organization and use of neural networks (methods and technologies)] / Pod. red. V.B. Novoseltseva. Tomsk: Izd-vo NTL, 2001. 128 p.
  3. Ananiev B.G. Chelovek kak predmet poznaniya [Man as an object of knowledge]. Spb.: Piter, 2001. 288 с.
  4. Arzamaszev A.A. Zenkova N.A. Modelirovanie v psihologii na osnove iskysstvennih neironnih setei [Modeling in psychology on the basis of artificial neural networks]. Tambov: IMFI im. Derzavina. 2003, 106 p.
  5. Barabanchikov V.A. Sistemnii podhod v struktyre psihologicheskogo poznania [The System Approach in the Structure of Psychological Cognition] // Metodologia i istoria psihologii [Methodology and History of Psychology]. 2007. Т. 2. V.1. рр.86—99.
  6. Borovikov V.P. Neironnii seti. Metodologia I technologia sovremennogo analiza dannih / Pod. red. V.P. Borovikova. M. : Goryachaiya liniya-Telecom, 2008. 392 p.
  7. Vorobev A.V. Obzor primeneniya matematicheskikh metodov pri provedenii psikhologicheskikh issledovaniy [The review of mathematical methods application in psychological researches]. // Psichologicheskie issledovania: electronni naychyni gournal [Psychological research: electron. sci. journal]. 2010. № 2. (10).
  8. Golovey L.A., Rybalko Ye.F., Prokhorenko T.V. Psikhologiya razvitiya. Khrestomatiya [Developmental psychology. Reader]. SPb.: Piter, 2001. 512 с.
  9. Kniazeva T.N. Predpodrostkovyy vozrast kak problema sovremennogo detstva [Preteen age as a problem of modern childhood] // Voprosy psikhologii [Questions of Psychology]. 2011. № 6. С. 25—35.
  10. Kruglov V.V., Borisov V.V. Iskustvennii neironnii seti. Teoria i praktica [Artificial neural networks. Theory and practice]. M.: Goryachaiya liniya — Telecom, 2002. 287 р.
  11. Lomov B.F. Sistemnost’ v psikhologii : izbrannyye psikhologicheskiye trudy [Systematic in psychology: selected psychological works]. Voronezh: MODEK; Moskva: Moskovskiy psikhologo-sotsial’nyy institute, 1996. 384 с.
  12. Polivanova K.N. Psikhologicheskiy analiz vozrastnoy periodizatsii [Psychological Analysis of Age Periodization] // Kul’turno-istoricheskaya psikhologiya [Cultural-Historical Psychology]. 2006. № 1. С. 26—31.
  13. Slavutskaja E.V., Slavutskii L.A. Neirosetevoi analiz vzaimosvyazi verbalnogo i neverbalnogo intellekta mladchih podrostkov [Neural network analysis of the interrelation between verbal and nonverbal intelligence of younger adolescents] // Psihologicheskii jurnal [Psychological journal]. 2014. V. 35. № 5. pp. 48—56. (in Russian)
  14. Slavutskaja E.V., Slavutskii L.A. Factornii analiz vzaimosvyazi individyalno-psihologicheskih i lichnostnih haracteristik mladchih podrostkov s yrovnem shkolnoi dezadaptatsii [Factor analysis of the relationship between the individual psychological and personal characteristics of younger adolescents with the level of school disadaptation] // Eksperimentalnaya psihologiya [Experimental Psychology]. 2013. V. 6. № 4. pp. 40—51.
  15. Tsukerman G.A. Perekhod iz nachal’noy shkoly v srednyuyu kak psikhologicheskaya problema [The transition from primary to secondary school as a psychological problem] // Voprosy psikhologii [Questions of psychology], 2001. № 5. С. 19 — 34.
  16. Elkonin D.B. Psikhicheskoye razvitiye v detskikh vozrastakh. Izbrannyye psikhologicheskiye Trudy [Mental development in childhood. Selected psychological works] / Pod red .D.I. Fel’dshteyna. M.: Izdatel’stvo «Institut prakticheskoy psikhologii»; Voronezh: NPO «MODEK», 1997. 416 с.
  17. Shendiapin V.N., Skotnikova I.G., Barabanchikov V.A., Tarasov V.B. Matematicheskoe modelirovanie uverennosti pri priniatii rechenia v sensornikh zadachakh [Mathematical modeling of confidence in decision- making in sensory tasks] / Psychological Journal [Psychological journal]. Т. 29. № 4. 2008. pp. 84—97.
  18. Baxt W.G. Complexity, chaos and human physiology: the justification for non-linear neural computational analysis // Cancer Lett, 1994. Vol. 77. № 2—3. P. 85—93.
  19. Berebin M.A., Pashkov S.V. Neural networks models usage experience for psychic de-adaptation prediction [Opit ptimenenia neirosetevykh modelei v tselayakh prognosa fizicheskoi desadapratsii] Veatntk YurGV (The South Urals State University Bulletin), 2006. № 14. P. 41— 45.
  20. Cattell R.B. Advanced in Cattelian Personality Theory. Handbook of Personality. Theory and Research. N.Y.: The Guilford Press, 1990.
  21. Collins W.A. (ed.) Development during middle childhood: The years from six to twelve. Washington, DC: Natl. Acad. Press, 1984.
  22. Dogic S., Karli G. Sign Language Recognition using Neural Networks // TEM Journal, 2014. 3 (4). P. 296—301.
  23. Haykin S. Neural networks: A comprehensive Foundation. New York: Prentice Hall, 1999.
  24. Hebb D. Organization of behavior. New York: Science Edition, 1961.
  25. Lipsitz J.S. Growing up forgotten: A review of research and programs concerning early adolescence. Toronto: Lexington Books, 1977.
  26. Lorenz V.A, Gavnkov V.L., Khlebopros R.G. Errors level discretisation during the neural network teaching [Diskretizatsiva urovnya oshibok pri obuchenii nejronnoi seti] Vestnik KGPU (Bulletin of KSPU). Krasnoyarsk, 2012. N 3. P. 93—100.
  27. Rosenblatt R. Principles of neurodynamics. New York: Spartan Books, 1959.
  28. Reznichenko N.S., Shilov S.N., Abdulkin V.V. Neuron Network Approach to the Solution of the Medical- Psychological Problems and in Diagnosis Process of Persons with Disabilities (Literature Review) // Journal of Siberian Federal University. Humanities & Social Sciences, 2013. V. 9 (6). P. 1256—1264.
  29. Slavutskaya E., Nikolaev E., Ivanova G., Yusupov I. Gender Characteristics Of Junior Adolesents’ Personal Traits // The European Proceedings of Social & Behavioural Sciences. ECCE 2018 [Электронный ресурс] // URL: https://doi.org/10.15405/epsbs.2018.07.69 (дата обращения: 17.09.2018).
  30. Usher M., Zakay D. A neural network model for attribute-based decision processes // Cognitive Science.1993, V. 17. P. 349—396.

Information About the Authors

Elena V. Slavutskaya, Doctor of Psychology, associate professor, professor of Psychology and Social Pedagogic department, Chuvash State Pedagogical University of I.Ya. Yakovlev, Cheboksary, Russia, e-mail: slavutskayaev@gmail.com

Victor S. Abrukov, Doctor of Physics and Matematics, Professor, Head of Department of Applied Physics and Nanotechnology, Chuvash State University, Cheboksary, Russia, e-mail: abrukov@yandex.ru

Leonid A. Slavutskii, Doctor of Physics and Matematics, professor, Professor of the Automatics and Control department, Chuvash State University, Cheboksary, Russia, e-mail: lenya@slavutskii.ru

Metrics

Views

Total: 1512
Previous month: 16
Current month: 5

Downloads

Total: 559
Previous month: 3
Current month: 2