On modal interactions in memorizing sequences

668

Abstract

In two pilot experiments, the learning and training of simple musical pieces on a keyboard with backlit keys were simulated. Subjects (musicians and non- musicians) were presented musical sequences of different lengths and in different modalities - visual, auditory and kinesthetic. After repeatedly observing the reference sequence, with the aim of learning, the subjects had to reproduce it, preferably without errors. It was found that the degree of influence of different combinations of modalities on the rate of learning of the sequence depends on its length and the experience of integration-mentioned modalities, which, according to the information received, is formed better among musicians than among non-musicians.

General Information

Keywords: sequential actions, modal interaction, learning sequences, learning

Journal rubric: Psychology of Perception

Article type: scientific article

For citation: Nazarov A.I., Kramarova S.N. On modal interactions in memorizing sequences. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2010. Vol. 3, no. 1, pp. 74–87. (In Russ., аbstr. in Engl.)

References

  1. Bernshtein N. A. Biomehanika i fiziologiya dvizhenij. M.: Izd-vo «Institut prakticheskoi psihologii»; Voronezh: NPO «MODEK», 1997. 608 s.
  2. Gordeeva N. D. Eksperimental’naya psihologiya ispolnitel’nogo deistviya. M.: Trivola, 1995. 321 s.
  3. Nazarov A. I. Psihologicheskaya model’ dvigatel’nogo deistviya // Vestnik Rossijskoi akademii estestvennyh nauk. 2005. T. 1. S. 89–95.
  4. Petrushin V. I. Muzykal’naya psihologiya: Uchebnoe posobie dlya vuzov. M.: Akademicheskij Proekt, Triksta, 2008. 400 s.
  5. Bird G., Osman M., Saggerson A., Heyes C. Sequence learning by action, observation and action observation // British Journal of Psychology. 2005. Vol. 96. Р. 371–388.
  6. Buonomano D. V., Merzenich M. M. Temporal information transformed into a spatial code by a neural network with realistic properties // Science. 1995. Vol. 267. P. 1028–1030.
  7. Cooper R. P. Mechanisms for the generation and regulation of sequential behaviour // Philosophical psychology. 2003. Vol. 16. №. 3. P. 299–416. Enhancing Human Performance: Issues, Theories, and Techniques // The National Academy of Sciences. N.Y., 2000.
  8. Forrester L., Whitall J. Bimanual finger tapping: effects of frequency and auditory information on timing consistency and coordination // Journal of Motor Behavior. 2000. Vol. 32. Issue 2. P. 176–192.
  9. Goodman L., Riley M., Mitra S., Turvey M. T. Advantages of rhythmic movements at resonance: minimal active degrees of freedom, minimal noise, and maximal predictability // Journal of Motor Behavior. 2000. Vol. 32. Issue 1. P. 3–9.
  10. Hazeltine E., Helmuth L. L., Ivry R. Neural mechanisms of timing // Trends in Cognitive Sciences. 1997. Vol. 1. P. 163–169.
  11. Ivry R. The representation of temporal information in perception and motor control // Current Opinion in Neurobiology. 1996. Vol. 6. P. 851–857.
  12. Ivry R., Hazeltine R. E.. Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism // Journal of Experimental Psychology: Human Perception and Performance. 1995. Vol. 21. P. 3–18.
  13. Kelly S. W., Burton A. M., Riedel B., Lynch E. Sequence learning by action and observation: Evidence for separate mechanisms // British Journal of Psychology. 2003. Vol. 94. P. 355–372.
  14. Kelso J.A.S.. Dynamic Patterns: the self-organization of brain and behavior. The MIT Press. Cambridge, USA; London, England. 1995. 334 p.
  15. Kugler P. N., Kelso J. A. S. & Turvey M. T. On the control and coordination of naturally developing systems // J. A. S. Kelso & J. E. Clark (Eds.). The development of movement control and coordination. New York: Wiley. 1982. P. 5–78.
  16. Lashley K. S. The problem of serial order in behavior // L. A. Jeffress (Ed.) Cerebral mechanisms in behavior. New York: Wiley. 1951. P. 112–131.
  17. O’Boyle D. J., Freeman J. S., Cody F. W. J. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease // Brain. 1996. Vol. 119. P. 51–70.
  18. Pellecchia G. L., Turvey M. T. Cognitive activity shifts the attractors of bimanual rhythmic coordination // Journal of Motor Behavior. 2001. Vol. 33. Issue 1. P. 9–16.
  19. Philip B. A., Wu Y., Donoghue J. P., Sanes J. N. Performance differences in visually and internally guided continuous manual tracking movements // Exp. Brain Res. 2008. Vol. 190. P. 475–491.
  20. Rosenbaum D. A. & Collyer C. E. (Eds.). Timing of behavior: Neural, psychological and computational perspective. Cambridge, MA: MIT Press. 1998. Vol. 32. Issue 3.
  21. Shanks D. R., Cameron A. The effect of mental practice on performance in a sequential reaction time task // Journal of Motor Behavior. 2000.
  22. Schmidt R. A. & Lee T. D. Motor control and learning: A behavioral emphasis (3rd ed.). Champaign, IL: Human Kinetics. 1999.
  23. Wing A. & Kristofferson A. Response delays and the timing of discrete motor responses // Perception and Psychophysics. 1973. Vol. 14. P. 5–12.

Information About the Authors

Anatoly I. Nazarov, PhD in Psychology, Head of the laboratory of experimental psychology, Department of Psychology, FSGN, State University “Dubna”, Dubna, Russia, ORCID: https://orcid.org/0000-0002-5844-0688, e-mail: koval39@inbox.ru

Svetlana N. Kramarova, postgraduate of the General Psychology Department of the International University of Nature, Society and Man «Dubna»

Metrics

Views

Total: 2600
Previous month: 3
Current month: 2

Downloads

Total: 668
Previous month: 0
Current month: 0