Sentiment Analysis for Automatic Assessment of Learners' Experience (on the Basis of Reviews on Online Courses in Russian and English)
Abstract
General Information
Keywords: sentiment analysis, user experience modelling, online education, natural language processing, semantic compression of text, computational linguistics
Article type: scientific article
Funding. The publication was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2022 (grant # 21-04-053 ‘Artificial Intelligence Methods in Literature and Language Studies’).
Acknowledgements. The authors are grateful to Moskvina A.D. for assistance in data collection.
For citation: Kirina M.A., Telnina L.D. Sentiment Analysis for Automatic Assessment of Learners' Experience (on the Basis of Reviews on Online Courses in Russian and English). Digital Humanities and Technology in Education (DHTE 2022): Collection of Articles of the III All-Russian Scientific and Practical Conference with International Participation. November 17-18, 2022 / V.V. Rubtsov, M.G. Sorokova, N.P. Radchikova (Eds). Moscow: Publishing house MSUPE, 2022., pp. 355–374.
References
- Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i analiz dannykh : ucheb. posobie [Automatic processing of natural language texts and data analysis] / Bol'shakova E.I., Vorontsov K.V., Efremova N.E., Klyshinskii E.S., Lukashevich N.V., Sapin A.S. Moscow: NIU VShE Publ., 2017. 269 p. (In Russ.).
- Al-Razgan M. et al. Using diffusion of innovation theory and sentiment analysis to analyze attitudes toward driving adoption by Saudi women. Technology in Society, 2021. Vol. 65. p. 101558. doi:10.1016/j.techsoc.2021.101558
- Hutto C., Gilbert E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 2014. Vol. 8, no. 1, pp. 216–225.
- Kim E., Klinger R. A Survey on Sentiment and Emotion Analysis for Computational Literary Studies, 2021. p. 38. doi:10.48550/arXiv.1808.03137
- Kulagin D.I. Publicly available sentiment dictionary for the Russian language KartaSlovSent, 2021. pp. 1106–1119. doi:10.28995/2075-7182-2021-20-1106-1119
- Liang Y., Liu Y., Loh H. T. Exploring Online Reviews For User Experience Modeling, 2013. p. 10.
- Loria S. textblob Documentation, 2020. p. 73.
- Ngoc T. V., Thi M. N., Thi H. N. Sentiment Analysis of Students’ Reviews on Online Courses: A Transfer Learning Method, 2021. p. 9.
- Phan M. H., Ogunbona P. O. Modelling Context and Syntactical Features for Aspect-based Sentiment Analysis Online: Association for Computational Linguistics, 2020. pp. 3211–3220. doi: 10.18653/v1/2020.acl-main.293
- Pope L. Comparing VADER and Text Blob to Human Sentiment. Medium [Online resource]. URL: https://towardsdatascience.com/comparing-vader-and-text-blob-to-human-sentiment-77068cf73982 (Accessed 02.09.2022)
- Reyes-Menendez A., Saura J. R., Filipe F. Marketing challenges in the #MeToo era: gaining business insights using an exploratory sentiment analysis. Heliyon, 2020. Vol. 6, iss. 3. doi: 10.1016/j.heliyon.2020.e03626
- Smetanin S. The Applications of Sentiment Analysis for Russian Language Texts: Current Challenges and Future Perspectives. IEEE Access. 2020, Vol. 8. pp. 110693–110719.
- Wang X. et al. A Depression Detection Model Based on Sentiment Analysis in Micro-blog Social Network. In J. Li et al. (ed.), Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. pp. 201–213.
- White B. Sentiment Analysis: VADER or TextBlob? Medium [Online resource]. URL: https://towardsdatascience.com/sentiment-analysis-vader-or-textblob-ff25514ac540 (Accessed 02.09.2022)
Information About the Authors
Metrics
Views
Total: 190
Previous month: 8
Current month: 6
Downloads
Total: 160
Previous month: 10
Current month: 7