The Influence of Sex and Cognitive Style on Eye Movement Patterns during Map Navigation

73

Abstract

We investigated the effects of sex and cognitive style on performance in the map navigation task with various label types (object labels, verbal labels, no labels) in 40 healthy participants (20 men, 20 women, age 24,3±0,8) using eye tracking. The cognitive styles (object, spatial, verbal) were assessed using a questionnaire developed by Blazhenkova and Kozhevnikov [2009]. Only men had a reduced number of fixations during route reproduction compared to route memorization; women had longer saccade durations than men. Participants with spatial cognitive style showed shorter saccade duration compared to object cognitive style. Participants with spatial and verbal cognitive styles had more fixations on maps with verbal labels than on the other maps. Analysis of questionnaire and the number of fixations has demonstrated the link between sex and cognitive style, but the effects of sex and cognitive style are not identical. Sex affects eye movements during the performance of different tasks (map familiarization, route memorization, and route reproduction), while cognitive style determines eye movements during navigation on maps with different types of labels.

General Information

Keywords: navigation, maps, sex, cognitive style, eye movement

Journal rubric: Psychology of Perception

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2024170201

Funding. The article was prepared in full within the state assignment of Ministry of Education and Science of the Russian Federation for 2021—2023.

Received: 12.02.2024

Accepted:

For citation: Kushnir A.B., Mikhailova E.S., Gerasimenko N.Yu. The Influence of Sex and Cognitive Style on Eye Movement Patterns during Map Navigation. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2024. Vol. 17, no. 2, pp. 10–28. DOI: 10.17759/exppsy.2024170201. (In Russ., аbstr. in Engl.)

References

  1. Barabanshchikov V.A. Okulomotornaya aktivnost' cheloveka kak predmet i metod psihologicheskogo issledovaniya [Human oculomotor activity as a subject and method of psychological research]. Ajtreking v psihologicheskoj nauke i praktike = Eyetracking in psychological science and practice / Eds. V.A. Barabanshchikov. Moscow: Kogito-Centr, 2015. Pp. 15—35. (In Russ.).
  2. Grachev V.I., Kolesov V.V., Menshikova G.Ya., Riabenkov V.I. Fiziologicheskie aspekty vospriyatiya vizual'noj informacii glazodvigatel'nym apparatom [Physiological aspects of visual information perception of the oculomotor apparatus]. Nanosistemy. Informacionnye tekhnologii =  Radioelectronics. Nanosystems. Information technologies, 2021. Vol. 13, no. 3, pp. 389—402. (In Russ.).
  3. Koltunova T.I., Petrushan M.V., Samarin A.I. Osobennosti dvizhenij glaz pri osmotre dinamicheskoj virtual'noj sredy [Features of eye movements during the examination of a dynamic virtual environment]. Eksperimental'naya psikhologiya =  Experimental Psychology, 2012. Vol. 5, no. 1, pp. 23—34. (In Russ.).
  4. Kushnir A.B., Mikhailova E.S., Gerasimenko N.Yu., Kazarezova I.A. Analiz dvizhenij glaz pri vypolnenii zadachi myslennogo vosproizvedeniya marshruta na karte gorodskoj mestnosti. Vliyanie tipa metok i pola [Analysis of the gaze fixations in performance of mental recall of the route on a city map. Effects of landmark type and gender]. Sensornye sistemy =  Sensory Systems, 2023. Vol. 37, no. 2, pp. 138—151. DOI:10.31857/S0235009223020026 (In Russ.).
  5. Menshikova G.Ya., Saveleva O.A., Koviazin M.S. Ocenka uspeshnosti vosproizvedeniya egocentricheskih i allocentricheskih prostranstvennyh reprezentacij pri ispol'zovanii system virtual'noj real'nosti [Assessing successful reproduction on egocentric and allocentric spatial representations using virtual reality]. Nacional'nyj psihologicheskij zhurnal =  National Psychological Journal, 2018. Vol. 30, no. 2, pp. 113—122. DOI:10.11621/npj.2018.0212 (In Russ.).
  6. Shedenko K.U., Anisimov V.N., Latanov A.V. Glazodvigatel'nye, elektroencefalograficheskie i vegetativnye korrelyaty interesa pri sochetannom pred"yavlenii izobrazhenij i teksta [Oculomotor, EEG and autonomic correlates of interest in the combined presentation of pictures and texts]. Kognitivnaya nauka v Moskve: novye issledovaniya: Materialy konferencii, Moskva, 23-24 iyunya 2021 goda = Cognitive Science in Moscow: New Research: Proceedings of the Conference, Moscow, June 23-24, 2021 / Eds. E.V. Pechenkova., M.V. Falikman., A.Ia. Koifman. Moscow: Buki Vedi, Institut prakticheskoj psihologii i psihoanaliza, 2021. Pp. 445—450. (In Russ.).
  7. Abdi Sargezeh B., Tavakoli N., Daliri M.R. Physiology & Behavior Gender-based eye movement differences in passive indoor picture viewing: An eye-tracking study. Physiology and Behavior, 2019. Vol. 206, pp. 43—50. DOI:10.1016/j.physbeh.2019.03.023
  8. Bécu M., Sheynikhovich D., Ramanoël S., Tatur G., Ozier-Lafontaine A., Authié C.N., Sahel J.A., Arleo A. Landmark-based spatial navigation across the human lifespan. Elife, 2023. Vol. 12, p. e81318. DOI:10.7554/eLife.81318
  9. Blazhenkova O., Kozhevnikov M. The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 2009. Vol. 23, no. 5, pp. 638—663. DOI:10.1002/acp.1473
  10. Bocchi A., Palermo L., Boccia M., Palmiero M., D’Amico S., Piccardi L. Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. Applied Neuropsychology. Child, 2020. Vol. 9, no. 1, pp. 31—40. DOI:10.1080/21622965.2018.1504218
  11. Boccia M., Vecchione F., Piccardi L., Guariglia C. Effect of cognitive style on learning and retrieval of navigational environments. Frontiers in Pharmacology, 2017. Vol. 8, pp. 496. DOI:10.3389/fphar.2017.00496
  12. Boone A.P., Gong X., Hegarty M. Sex differences in navigation strategy and efficiency. Memory and Cognition, 2018. Vol. 46, no. 6, pp. 909—922. DOI:10.3758/s13421-018-0811-y
  13. Boone A.P., Maghen B., Hegarty M. Instructions matter: Individual differences in navigation strategy and ability. Memory and Cognition, 2019. Vol. 47, no. 7, pp. 1401—1414. DOI:10.3758/s13421-019-00941-5
  14. Borodaeva Z., Winkler S., Brade J., Klimant P., Jahn G. Spatial updating in virtual reality for reproducing object locations in vista space-Boundaries, landmarks, and idiothetic cues. Frontiers in Psychology, 2023. Vol. 14, p. 1144861. DOI:10.3389/fpsyg.2023.1144861
  15. Brügger A., Richter K.-F., Fabrikant S.I. How does navigation system behavior influence human behavior. Cognitive Research: Principles and Implications, 2019. Vol. 4, no. 1, p. 5. DOI:10.1186/s41235-019-0156-5
  16. Burggraaf R., Geest J.N. Van Der, Hooge I.T.C., Maarten A. Developmental changes in visual search are determined by changing visuospatial abilities and task repetition: A longitudinal study in adolescents. Applied Neuropsychology: Child, 2021. Vol. 10, no. 2, pp. 133—143. DOI:10.1080/21622965.2019.1627211
  17. Castilla A., Berthoz A., Urukalo D., Zaoui, M., Perrochon, A., Kronovsek T. Age and sex impact on visuospatial working memory (VSWM), mental rotation, and cognitive strategies during navigation. Neuroscience Research, 2022. Vol. 183, pp. 84—96. DOI:10.1016/j.neures.2022.07.007
  18. Chan E., Baumann O., Bellgrove M.A., Mattingley J.B. From objects to landmarks: the function of visual location information in spatial navigation. Frontiers in Psychology, 2012. Vol. 3, pp. 1—11. DOI:10.3389/fpsyg.2012.00304
  19. Cheng C.-Y., Yen M.-Y., Lin H.-Y., Hsia W.-W., Hsu W.-M. Association of ocular dominance and anisometropic myopia. Investigative Ophthalmology and Visual Science, 2004. Vol. 45, no. 8, pp. 2856—2860. DOI:10.1167/iovs.03-0878
  20. Clifton C., Ferreira F., Henderson J.M., Inhoff A. W., Liversedge S.P., Reichle E.D., Schotter E. R. Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. Journal of Memory and Language, 2016. Vol. 86, pp. 1—19. DOI:10.1016/j.jml.2015.07.004
  21. Coluccia E., Louse G. Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 2004. Vol. 24, no. 3, pp. 329—340. DOI:10.1016/j.jenvp.2004.08.006
  22. Coutrot A., Silva R., Manley E., de Cothi W., Sami S., Bohbot V.D., Wiener J.M., Hölscher C., Dalton R.C., Hornberger M., Spiers H.J. Global determinants of navigation ability. Current Biology, 2018. Vol. 28, no. 17, pp. 2861—2866.e4. DOI:10.1016/j.cub.2018.06.009
  23. Ferguson T.D., Williams C.C., Skelton R.W., Krigolson O.E. Passively learned spatial navigation cues evoke reinforcement learning reward signals. Cognition, 2019. Vol. 189, pp. 65—75. DOI:10.1016/j.cognition.2019.03.015
  24. Gagnon K.T., Thomas B.J., Munion A., Creem-Regehr S.H., Cashdan E.A., Stefanucci J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 2018. Vol. 180, pp. 108—117. DOI:10.1016/j.cognition.2018.06.020
  25. Harris T., Hagg J., Pletzer B. Eye-movements during navigation in a virtual environment: Sex differences and relationship to sex hormones. Frontiers in Neuroscience, 2022. Vol. 16, p. 755393. DOI:10.3389/fnins.2022.755393
  26. Harris T.A., Scheuringer A., Pletzer B. Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biology of Sex Differences, 2019. Vol. 10, no. 1, pp. 1—12. DOI:10.1186/s13293-019-0232-z
  27. Hegarty M., He C., Boone A.P., Yu S., Jacobs E.G., Chrastil E.R. Understanding differences in wayfinding strategies. Topics in Cognitive Science, 2023. Vol. 15, no. 1, pp. 102—119. DOI:10.1111/tops.12592
  28. Höffler T.N., Koć‐Januchta M., Leutner D. More evidence for three types of cognitive style: Validating the Object-Spatial Imagery and Verbal Questionnaire using eye tracking when learning with texts and pictures. Applied Cognitive Psychology, 2017. Vol. 31, pp. 109—115. DOI:10.1002/acp.3300
  29. Irving S., Schöberl F., Pradhan C., Brendel M., Bartenstein P., Dieterich M., Brandt T., Zwergal A. A novel real-space navigation paradigm reveals age- and gender-dependent changes of navigational strategies and hippocampal activation. Journal of Neurology, 2018. Vol. 265, pp. 113—126. DOI:10.1007/s00415-018-8987-4
  30. Meghanathan R.N., Leeuwen C. Van, Giannini M., Nikolaev A.R. Neural correlates of task-related refixation behavior. Vision Research, 2020. Vol. 175, pp. 90—101. DOI:10.1016/j.visres.2020.07.001
  31. Markostamou I., Morrissey S., Hornberger M. Imagery and verbal strategies in spatial memory for route and survey descriptions. Brain Sciences, 2024. Vol. 14, no. 4, p. 403. DOI:10.3390/brainsci14040403
  32. Nazareth A., Huang X., Voyer D., Newcombe N. A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin and Review, 2019, Vol. 26, no. 5, pp. 1503—1528. DOI:10.3758/s13423-019-01633-6
  33. Newman P.M., McNamara T.P. Integration of visual landmark cues in spatial memory // Psychological Research, 2022. Vol. 86, no. 5, pp. 1636—1654. DOI:10.1007/s00426-021-01581-8
  34. Newman P.M., Qi Y., Mou W., McNamara T.P. Statistically optimal cue integration during human spatial navigation. Psychonomic Bulletin and Review, 2023. Vol. 30, no. 5, pp. 1621—1642. DOI:10.3758/s13423-023-02254-w
  35. Nori R., Piccardi L. I believe I’m good at orienting myself… But is that true. Cognitive Processing, 2015. Vol. 16, no. 3, pp. 301—307. DOI:10.1007/s10339-015-0655-3
  36. Nori R., Piccardi L., Maialetti A., Goro M., Rossetti A., Argento O., Guariglia C. No gender differences in egocentric and allocentric environmental transformation after compensating for male advantage by manipulating familiarity. Frontiers in Neuroscience, 2018. Vol. 12, pp. 1—9. DOI:10.3389/fnins.2018.00204
  37. Pazzaglia F., Meneghetti C., Ronconi L. Tracing a route and finding a shortcut: The working memory, motivational, and personality factors involved. Frontiers in Human Neuroscience, 2018. Vol. 12, p. 225. DOI:10.3389/fnhum.2018.00225
  38. Pazzaglia F., Moè A. Cognitive styles and mental rotation ability in map learning. Cognitive Processing, 2013. Vol. 14, no. 4, pp. 391—399. DOI:10.1007/s10339-013-0572-2
  39. Peer M., Brunec I.K., Newcombe N.S., Epstein R.A. Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 2022. Vol. 25, no. 1, pp. 37—54. DOI:10.1016/j.tics.2020.10.004.Structuring
  40. Piccardi L., De Luca M., Nori R., Palermo L., Iachini F., Guariglia C. Navigational style influences eye movement pattern during exploration and learning of an environmental map. Frontiers in Behavioral Neuroscience, 2016. Vol. 10, p. 140. DOI:10.3389/fnbeh.2016.00140
  41. Schiller D., Eichenbaum H., Buffalo E.A., Davachi L., Foster D.J., Leutgeb S., Ranganath C. Memory and space: Towards an understanding of the cognitive map. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2015. Vol. 35, no. 41, pp. 13904—13911. DOI:10.1523/JNEUROSCI.2618-15.2015
  42. Schinazi V.R., Meloni D., Grübel J., Angus D.J., Baumann O., Weibel R.P., Jeszenszky P., Hölscher C., Thrash T. Motivation moderates gender differences in navigation performance. Scientific Reports, 2023. Vol. 13, no. 1, p. 15995. DOI:10.1038/s41598-023-43241-4
  43. Seifer D., Mcgrath K., Scholl G., Mohan V., Gold J. Sex differences in electronic health record navigation strategies: Secondary data analysis. JMIR Human Factors, 2021. Vol. 8, no. 2, pp. e25957. DOI:10.2196/25957
  44. Spriggs M.J., Kirk I.J., Skelton R.W. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies. Behavioural Brain Research, 2018. Vol. 339, pp. 195—206. DOI:10.1016/j.bbr.2017.11.041
  45. Wolbers T., Wiener J.M. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience, 2014. Vol. 8, p. 571. DOI:10.3389/fnhum.2014.00571
  46. Yagi S., Galea L.A.M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology, 2019. Vol. 44, no. 1, pp. 200—213. DOI:10.1038/s41386-018-0208-4

Information About the Authors

Anastasia B. Kushnir, Minor Scientist, Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity & Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0003-4627-9484, e-mail: naya.kushnir@gmail.com

Elena S. Mikhailova, Doctor of Biology, Main Scientist, Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity & Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0001-5098-1909, e-mail: esmikhailova@mail.ru

Natalia Y. Gerasimenko, PhD in Biology, Senior Scientist, Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity & Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0003-3864-4509, e-mail: nger@mail.ru

Metrics

Views

Total: 203
Previous month: 54
Current month: 39

Downloads

Total: 73
Previous month: 22
Current month: 9