Subjective time scales when working with perspective human-computer interfaces

378

Abstract

The analysis of subjective time scales of the subjects with perspective human-computer interfaces was carried out: neurocomputer (brain-computer), electromyographic, oculografic. It is shown that for all of them it is typical to underestimate the maximum time spent for the execution of one team. In this case, for the electromyographic and oculografic, this feature is also preserved for the indicators of the average time for executing the commands. The results of the assessment demonstrate a unified approach of users to the formation of subjective time when working with various interfaces: the user estimates both the averaged and the best (minimum) with the worst (maximum) time for executing commands on a single scale. Subjects who switched worse from generating one command for the interface to another subjectively rated the interface as slower. The HRV data showed the LF-band relationship with a subjective estimate of the time spent working with the interface. Analysis of the relationship (true time-subjective) / true time has shown that subjective time scales when working with the neurocomputer and oculographic interfaces demonstrate a high correlation with each other as opposed to electromyographic.

General Information

Keywords: brain-computer interfaces (neurocomputer), electromyographic interfaces, oculografic in- terfaces, subjective time scales

Journal rubric: Cognitive Psychology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2019120206

Funding. This work was supported by the RFBR grant 16-29-08342-офи-м

Acknowledgements. The authors thank A.A. Vakhtin for assistance in collecting data for research.

For citation: Turovskiy Y.A., Mamaev A.V., Alekseev A.V., Borzunov S.V. Subjective time scales when working with perspective human-computer interfaces. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2019. Vol. 12, no. 2, pp. 75–86. DOI: 10.17759/exppsy.2019120206. (In Russ., аbstr. in Engl.)

References

  1. Al’manakh psikhologicheskikh testov [Almanac of psychological tests]. Moscow, KSP, 1995. pp. 92— 94.
  2. Baevskii R.M. Vozrastnye osobennosti serdechnogo ritma u lits s raznoi stepen’yu adaptatsii k usloviyam okruzhayushchei sredy [Age features of heart rhythm in persons with different degrees of adaptation to environmental conditions]. Fiziologiya cheloveka [Human Physiology]. 1985. V. 11, no. 2. pp. 208—212.
  3. Bushov Yu.V., Nesmelova H.H. Individual’nye osobennosti vospriyatiya chelovekom dlitel’nosti intervalov vremeni [Individual features of human perception of the duration of time intervals]. Fiziologiya cheloveka [Human Physiology]. 1994. V. 20, no. 3. pp. 30—35.
  4. Gareev E.M., Osipova L.G. Vozrastnye osobennosti otsenki vremeni pri razlichnykh vidakh deyatel’nosti [Age features of the estimation of time for various types of activity]. Zhurnal vysshey nervnoy deyatel`nosti [Journal of Higher Nervous Activity]. 1980. V. 30, vyp. 2. pp. 251—255.
  5. Glants S. Mediko-biologicheskaya statistika. M.: Praktika, 1998. 459 p. (Glantz S. Primer of biostatistics. M. Praktika, 1998. 459 p. [in Russian]).
  6. Karelin A.A. Bol’shaya entsiklopediya psikhologicheskikh testov [A great encyclopedia of psychological tests]. Moscow.: Eksmo, 2007. 416 p.
  7. Kist‘ Michelangelo [Elektronnyi resurs] [Brush Michelangelo]. Ottobock. 2000. URL: http:// www.ottobock.ru/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-hand/                       (data obrashcheniya: 15.12.2017).
  8. Klimov R.S. Metod otsenivaniya professional’noi podgotovlennosti operatorov robototekhnicheskikh kompleksov [Method for assessing the professional preparedness of operators of robotic complexes]. Trendy i upravlenie [Trends and management]. 2016. no.4. pp. 430—437.
  9. Raigorodskii D.Ya. Prakticheskaya psikhodiagnostika [Practical psychodiagnosis]. Moscow.: Bakhrakh-M, 2011.
  10. Runion R. Spravochnik po neparametricheskoi statistike. Sovremennyi podkhod. Moscow. Finansy i statistika, 1982. 198 p. (Runyon R. Nonparametric Statistic. A Contemporary Approach. Moscow. Finansy i statistica, 1982. 198 p. [in Russian]).
  11. Ryabykina G.V., Sobolev A.V. Variabel’nost’ ritma serdtsa [Heart rate variability]. Moscow. STARKO. 1998. 200 p.
  12. Turovskii Ya.A. Vegetativnaya regulyatsiya serdechno-sosudistoi sistemy plodov i novorozhdennykh detei, perenesshikh khronicheskuyu vnutriutrobnuyu gipoksiyu [Vegetative regulation of the cardiovascular system of fetuses and newborn children who underwent chronic intrauterine hypoxia]: avtoref. dis.. kand. med. Nauk / Ya.A. Turovskii. Voronezh, 2005. 24 p.
  13. Turovskii Ya.A., Dorokhov E.V. Osobennosti vospriyatiya korotkikh intervalov vremeni [Peculiarities of Perception of Short Time Intervals]. Yubileinyi sbornik trudov «Klinicheskaya i eksperimental’naya meditsina segodnya» [Jubilee Collection of Works “Clinical and Experimental Medicine Today”]. Voronezh. 1998. pp. 64—65.
  14. Turovskii Ya.A., Dorokhov E.V., Fedorov M.V. Vliyanie periodicheskogo informatsionnogo vozdeistviya na vospriyatie — sub”ektivnykh shkal vremeni chelovekom [Influence of periodic information impact on perception — subjective time scales by the person]. Trudy pervogo mezhdistsiplinarnogo seminara «Fraktaly i prikladnaya sinergetika» [Proceedings of the first interdisciplinary seminar “Fractals and applied synergetics”]. Moskva. 1999. pp. 140—142.
  15. Turovskii Ya.A., Kurgalin S.D., Alekseev A.V. Analiz dvizheniya glaz cheloveka pri upravlenii samokhodnym shassi s ispol’zovaniem sistemy videookulograficheskogo interfeisa [Analysis of the human eye movement in the control of a self-propelled chassis using the video-oculographic interface system]. Sensornye sistemy [Sensory systems]. 2017. no. 1. pp. 51—58.
  16. Turovskii Ya.A., Kurgalin S.D., Borzunov S.V. Otsenka skorosti raboty neirokomp’yuternogo interfeisa, realizovannogo s ispol’zovaniem gibridnogo intellekta [Estimating the speed of the neurocomputer interface implemented using hybrid intelligence]. Biomeditsinskaya radioelektronika [Biomedical radioelectronics]. 2015. no. 3. pp. 61—70.
  17. Gao X., Xu D., Cheng M. A BCI-Based Environmental Controller for the Motion- Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2003. V. 11. no. 2. pp. 137—140.
  18. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use // European Heart Journal. Vol. 17, March 1996. pp. 354—381.
  19. Tello R., Müller S., Ferreira A., Freire T. Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials. Res. Biomed. Eng. 2015. V. 31 (3). pp. 218—231.
  20. Zhang Ya., Xu P., Cheng K., Yao D. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. Journal of Neuroscience Methods. 2014. pp. 32—40.

Information About the Authors

Yaroslav A. Turovskiy, PhD in Medicine, Associate Professor, Head of the Laboratory of Medical Cybernetics, Digital Technologies Department, Voronezh State University, Voronezh, Russia, ORCID: https://orcid.org/0000-0002-5290-885X, e-mail: yaroslav_turovsk@mail.ru

Aleksandr V. Mamaev, Leading Engineer of the Laboratory of Medical Cybernetics, Digital Technologies Department, Voronezh State University, Voronezh, Russia, e-mail: alex9100@bk.ru

Aleksandr V. Alekseev, Leading Engineer of the Laboratory of Medical Cybernetics of the Digital Technologies Department, Voronezh State University, Student of the Voronezh State University, Voronezh, Russia, e-mail: a_v_alekseev@bk.ru

Sergei V. Borzunov, PhD in Physics and Matematics, Associate Professor of Digital Technologies Department, Voronezh State University, Voronezh, Russia, e-mail: sborzunov@gmail.com

Metrics

Views

Total: 1251
Previous month: 2
Current month: 5

Downloads

Total: 378
Previous month: 1
Current month: 1