Autism and Developmental Disorders
2020. Vol. 18, no. 3, 46–63
doi:10.17759/autdd.2020180306
ISSN: 1994-1617 / 2413-4317 (online)
GABA and Glutamate Imbalance in Autism and Their Reversal as Novel Hypothesis for Effective Treatment Strategy
Abstract
General Information
Keywords: autism; glutamate excitotoxicity; gamma-aminobutyric acid; vitamin D; gut microbiota
Journal rubric: Research & Diagnosis of ASD
DOI: https://doi.org/10.17759/autdd.2020180306
Funding. This project was funded by the National Plan for Science Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award number: 08-MED 510-02
Acknowledgements. The author thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.” Special thanks for Mrs Ramesa Shafi Bhat, Biochemistry Department, College of Science, KSU for her great efforts in improving the manuscript
For citation: El-Ansary A. GABA and Glutamate Imbalance in Autism and Their Reversal as Novel Hypothesis for Effective Treatment Strategy. Autizm i narusheniya razvitiya = Autism and Developmental Disorders, 2020. Vol. 18, no. 3, pp. 46–63. DOI: 10.17759/autdd.2020180306.
References
- Adams J.B. et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutrition & metabolism, 2011, vol. 8, no. 1, p. 34. DOI: 10.1186/1743-7075-8-34
- Alfawaz H., Tamim H., Alharbi S., Aljaser S., Tamimi W. Vitamin D status among patients visiting a tertiary care center in Riyadh, Saudi Arabia: a retrospective review of 3475 cases. BMC public health, 2014, vol. 14, no. 1, p. 159. DOI: 10.1186/1471-2458-14-159
- Al-Suwailem E., Abdi S., Bhat R.S., El-Ansary A. Glutamate Signaling Defects in Propionic Acid Orally Administered to Juvenile Rats as an Experimental Animal Model of Autism. Neurochemical Journal, 2019, vol. 13, no. 1, pp. 90—98. DOI: 10.1134/S1819712419010021
- Anderson C.M., Swanson R.A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 2000, vol. 32, no. 1, pp. 1—14.
- Angelova P.R., Abramov A.Y. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS letters, 2018, vol. 592, no. 5, pp. 692—702. DOI: 10.1002/1873-3468.12964
- Aoki Y., Cortese S. Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis. Molecular neurobiology, 2016, vol. 53, no. 3, pp. 1579—1588. DOI: 10.1007/s12035-015-9116-3
- Ashwood P., Hughes H.K. Brief Report: Anti-Candida albicans IgG antibodies in children with autism spectrum disorders. Frontiers in psychiatry, 2018, vol. 9, p. 627. DOI: 10.3389/fpsyt.2018.00627
- Bailey A. et al. A clinicopathological study of autism. Brain: a journal of neurology, 1998, vol. 121, no. 5, pp. 889—905. DOI: 10.1093/brain/121.5.889
- Barrett E., Ross R.P., O’Toole P.W., Fitzgerald G.F., Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine [correction published in: Journal of applied microbiology, 2014, vol. 116, no. 5, pp. 1384—1386]. Journal of applied microbiology, 2012, vol. 113, no. 2, pp. 411—417. DOI: 10.1111/j.1365-2672.2012.05344.x
- Ben-Ari Y. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience, 2014, vol. 279, pp. 187—219. DOI: 10.1016/j.neuroscience.2014.08.001
- Bezzi P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nature neuroscience, 2001, vol. 4, no. 7, pp. 702—710. DOI: 10.1038/89490
- Bilbo S.D., Schwarz J.M. Early-life programming of later-life brain and behavior: a critical role for the immune system. Frontiers in behavioral neuroscience, 2009, vol. 3, p. 14. DOI: 10.3389/neuro.08.014.2009
- Bilbo S.D., Smith S.H., Schwarz J.M. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. Journal of Neuroimmune Pharmacology, 2012, vol. 7, no. 1, pp. 24—41. DOI: 10.1007/s11481-011-9299-y
- Biou V., Bhattacharyya S., Malenka R.C. Endocytosis and recycling of AMPA receptors lacking GluR2/3. Proceedings of the National Academy of Sciences of the United States of America, 2008, vol. 105, no. 3, pp. 1038—1043. DOI: 10.1073/ pnas.0711412105
- Blatt G.J. et al. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. Journal of autism and developmental disorders, 2001, vol. 31, no. 6, pp. 537—543. DOI: 10.1023/a:1013238809666
- Boonstra E., de Kleijn R., Colzato L.S., Alkemade A., Forstmann B.U., Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Frontiers in Psychology, 2015, vol. 6, p. 1520. DOI: 10.3389/ fpsyg.2015.01520
- Borisova T. et al. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [(3)H]GABA from rat brain nerve terminals. Bioorganic & Medicinal Chemistry, 2017, vol. 25, no. 2, pp. 759— 764. DOI: 10.1016/j.bmc.2016.11.052
- Borisova T. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Frontiers in Physiology, 2018, vol. 9, p. 728. DOI: 10.3389/fphys.2018.00728
- Borisova T. Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Reviews in the Neurosciences, 2016, vol. 27, no. 1, pp. 71—81. DOI: 10.1515/revneuro-2015-0023
- Borisova T., Borysov A. Putative duality of presynaptic events. Reiews in the Neurosciences, 2016, vol. 27, no. 4, pp. 377— 383. DOI: 10.1515/revneuro-2015-0044
- Bravo J.A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108, no. 38, pp. 16050—16055. DOI: 10.1073/pnas.1102999108
- Brown M.S., Singel D., Hepburn S., Rojas D.C. Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: a (1)H-MRS study. Autism Research, 2013, vol. 6, no. 1, pp. 1—10. DOI: 10.1002/ aur.1260
- Bruchhage M.K., Bucci M.-P., Becker E.B.E. Cerebellar involvement in autism and ADHD. Handbook of clinical neurology, 2018, vol. 155, pp. 61—72. DOI: 10.1016/B978-0-444-64189-2.00004-4
- Burrus C J. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Medical Hypotheses, 2012, vol. 79, no. 6, pp. 784—785. DOI: 10.1016/j.mehy.2012.08.029
- Canitano R., Pallagrosi M. Autism spectrum disorders and schizophrenia spectrum disorders: excitation/inhibition imbalance and developmental trajectories. Frontiers in psychiatry, 2017, vol. 8, p. 69. DOI: 10.3389/fpsyt.2017.00069
- Caraiscos V.B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, vol. 101, no. 10, pp. 3662—3667. DOI: 10.1073/pnas.0307231101
- Cellot G., Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in pediatrics, 2014, vol. 2, p. 70. DOI: 10.3389/fped.2014.00070
- Chebib M., Johnston G.A. The ‘ABC’ of GABA receptors: a brief review. Clinical and experimental pharmacology and physiology, 1999, vol. 26, no. 11, pp. 937—940. DOI: 10.1046/j.1440-1681.1999.03151.x
- Cohen B.I. GABA-transaminase, the liver and infantile autism. Medical Hypotheses, 2001, vol. 57, no. 6, pp. 673—674. DOI: 10.1054/mehy.2001.1350
- Côme E., Marques X., Poncer J.C., Lévi S. Neuronal protein mobility KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology, 2020, vol. 169. DOI: 10.1016/j.neuropharm.2019.03.014
- Cull-Candy S., Kelly L., Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Current opinion in neurobiology, 2006, vol. 16, no. 3, pp. 288—297. DOI: 10.1016/j.conb.2006.05.012
- Daghestani M.H. et al. The role of apitoxin in alleviating propionic acid-induced neurobehavioral impairments in rat pups: the expression pattern of Reelin gene. Biomedicine & Pharmacotherapy, 2017, vol. 93, pp. 48—56.
- Dhossche D. et al. Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Medical Science Monitor, 2002, vol. 8, no. 8, pp. PR1—PR6.
- Diagnostic and statistical manual of mental disorders: DSM-5. 5th edition. Arlington: Publ. American Psychiatric Publishing, 2013. ISBN 978-0-89042-555-8.
- Duarte S.T. et al. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome. PLoS One, 2013, vol. 8, no. 7, article no. e68851. DOI: 10.1371/journal.pone.0068851
- Edfawy M. et al. Abnormal mGluR-mediated synaptic plasticity and autism-like behaviours in Gprasp2 mutant mice. Nature Communications, 2019, vol. 10, no. 1, p. 1431. DOI: 10.1038/s41467-019-09382-9
- Edmiston E., Ashwood P., Van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorder. Biological psychiatry, 2017, vol. 81, no. 5, pp. 383—390. DOI: 10.1016/j.biopsych.2016.08.031
- Egerton A. et al. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology, 2012, vol. 37, no. 11, pp. 2515—2521. DOI: 10.1038/npp.2012.113
- El-Ansary A. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients. Data in brief, 2016, vol. 7, pp. 111—116. DOI: 10.1016/j.dib.2016.02.025
- El-Ansary A. et al. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: the role of vitamin D. Metabolic brain disease, 2018, vol. 33, no. 3, pp. 917—931. DOI: 10.1007/s11011-018-0199-1
- El-Ansary A. et al. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metabolic brain disease, 2018, vol. 33, no. 4, pp. 1155— 1164. DOI: 10.1007/s11011-018-0212-8
- El-Ansary A., Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 2014, vol. 11, p. 189. DOI: 10.1186/s12974-014-0189-0
- El-Ansary A., Al-Salem H.S., Asma A., Al-Dbass A. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen. Lipids in health and disease, 2017, vol. 16, no. 1, p. 96. DOI: 10.1186/s12944-017-0485-7
- Essa M.M., Braidy N., Subash S., Vijayan R.K., Guillemin G.J. Excitotoxicity in the Pathogenesis of Autism. In Kostrzewa R.M. (ed.) Handbook of Neurotoxicity. Springer, New York: Publ. Springer, 2014. 636 p. ISBN 978-1- 46145835-7.
- Eyles D.W. Vitamin D and autism: does skin colour modify risk? Acta paediatrica, 2010, vol. 99, no. 5, pp. 645—647. DOI: 10.1111/j.1651-2227.2010.01797.x
- Fatemi S.H. et al. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 2002, vol. 52, no. 8, pp. 805—810. DOI: 10.1016/s0006-3223(02)01430-0
- Fatemi S.H. The hyperglutamatergic hypothesis of autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, vol. 32, no. 3, p. 911 [author reply 912—913]. DOI: 10.1016/j.pnpbp.2007.11.004
- Felipo V., Butterworth R.F. Neurobiology of ammonia. Progress in Neurobiology, 2002, vol. 67, no. 4, pp. 259—279. DOI: 10.1016/s0301-0082(02)00019-9
- Feng J. et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutritional neuroscience, 2017, vol. 20, no. 5, pp. 284—290. DOI: 10.1080/1028415X.2015.1123847
- Ferguson A.R. et al. Group I metabotropic glutamate receptors control metaplasticity of spinal cord learning through a protein kinase C-dependent mechanism. Journal of Neuroscience, 2008, vol. 28, no. 46, pp. 11939—11949. DOI: 10.1523/ JNEUROSCI.3098-08.2008
- Fernell E. et al. Autism spectrum disorder and low vitamin D at birth: a sibling control study. Molecular autism, 2015, vol. 6, no. 1, p. 3. DOI: 10.1186/2040-2392-6-3
- Fiorentino M., Sapone A., Senger S. et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 2016, vol. 7, p. 49. DOI:10.1186/s13229-016-0110-z
- Ford T.C., Abu-Akel A., Crewther D.P. The association of excitation and inhibition signaling with the relative symptom expression of autism and psychosis-proneness: Implications for psychopharmacology. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 2019, vol. 88, pp. 235—242. DOI: 10.1016/j.pnpbp.2018.07.024
- Ford T.C., Nibbs R., Crewther D.P. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits. PloS one, 2017, vol. 12, no. 7, article no. e0181961. DOI: 10.1371/journal.pone.0181961
- Ford T.C., Nibbs R., Crewther D.P. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation. NeuroImage: Clinical, 2017, vol. 16, pp. 125—131. DOI: 10.1016/j.nicl.2017.07.009
- Gegelashvili G., Bjerrum O.J. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. Journal of neurochemistry, 2014, vol. 131, no.6, pp. 712—730. DOI: 10.1111/jnc.12957
- Gong Z.-L. et al. Serum 25-hydroxyvitamin D levels in Chinese children with autism spectrum disorders. Neuroreport, 2014, vol. 25, no. 1, pp. 23—27. DOI: 10.1097/WNR.0000000000000034
- Grant W.B., Cannell J.J. Autism prevalence in the United States with respect to solar UV-B doses: an ecological study. Dermato-endocrinology, 2013, vol. 5, no. 1, pp. 159—164. DOI: 10.4161/derm.22942
- Grewer C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry, 2005, vol. 44, no. 35, pp. 11913—11923. DOI: 10.1021/bi050987n
- Groves N.J. et al. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behavioural brain research, 2013, vol. 241, pp. 120—131. DOI: 10.1016/j.bbr.2012.12.001
- Han S., Tai C., Jones C.J., Scheuer T., Catterall W.A. Enhancement of inhibitory neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron, 2014, vol. 81, no. 6, pp. 1282— 1289. DOI: 10.1016/j.neuron.2014.01.016
- He Q., Nomura T., Xu J., Contractor A. The developmental switch in GABA polarity is delayed in fragile X mice. Journal of Neuroscience, 2014, vol. 34, no. 2, pp. 446—450. DOI: 10.1523/JNEUROSCI.4447-13.2014
- Hoernlein C. MSG and autism [Web resource]. 2019. URL: https://www.msgtruth.org/msg-autism (Accessed 03.09.2020).
- Iovene M.R. et al. Intestinaldysbiosisandyeastisolationinstoolofsubjectswithautismspectrumdisorders. Mycopathologia, 2017, vol. 182, no. 3-4, pp. 349—363. DOI: 10.1007/s11046-016-0068-6
- Kemper T.L., Bauman M. Neuropathology of infantile autism. Journal of neuropathology and experimental neurology, 1998, vol. 57, no. 7, pp. 645—652. DOI: 10.1097/00005072-199807000-00001
- Knoflach F., Hernandez M.-C., Bertrand D. GABAA receptor-mediated neurotransmission: Not so simple after all. Biochemical pharmacology, 2016, vol. 115, pp. 10—17. DOI: 10.1016/j.bcp.2016.03.014
- Kočovská E., Gaughran F., Krivoy A., Meier U.C. Vitamin-D deficiency as a potential environmental risk factor in multiple sclerosis, schizophrenia, and autism. Frontiers in psychiatry, 2017, vol. 8, no. 47. DOI: 10.3389/fpsyt.2017.00047
- Koyama R., Ikegaya Y. Microglia in the pathogenesis of autism spectrum disorders. Neuroscience research, 2015, vol. 100, pp. 1—5. DOI: 10.1016/j.neures.2015.06.005
- Krisanova N. et al. Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food and Chemical Toxicology, 2019, vol. 123, pp. 142—150. DOI: 10.1016/j.fct.2018.10.054
- Lee V., Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Frontiers in neural circuits, 2014, vol. 8, p. 3. DOI: 10.3389/fncir.2014.00003
- Leonoudakis D., Zhao P., Beattie E.C. Rapid tumor necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. Journal of Neuroscience, 2008, vol. 28, no. 9, pp. 2119—2130. DOI: 10.1523/JNEUROSCI.5159-07.2008
- Leonte A., Colzato L.S., Steenbergen L., Hommel B., Akyürek E.G. Supplementation of gamma-aminobutyric acid (GABA) affects temporal, but not spatial visual attention. Brain and Cognition, 2018, vol. 120, pp. 8—16. DOI: 10.1016/j. bandc.2017.11.004
- Lieberman O., McGuirt A.F., Tang G., Sulzer D. Roles for neuronal and microglial autophagy in synaptic pruning during development. Neurobiology of Disease, 2019, vol. 122, pp. 49—63. DOI: 10.1016/j.nbd.2018.04.017
- Lingford-Hughes A. et al. Imaging the GABA-benzodiazepine receptor subtype containing the α5-subunit in vivo with [11C] Ro15 4513 positron emission tomography. Journal of Cerebral Blood Flow & Metabolism, 2002, vol. 22, no. 7, pp. 878—889. DOI: 10.1097/00004647-200207000-00013
- Liu A., Zhou W., Qu L., He F., Wang H., Wang Y., Cai C., Li X., Zhou W., Wang M. Altered Urinary Amino Acids in Children With Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2019, vol. 13, p. 7. DOI: 10.3389/fncel.2019.00007
- Lu J.-C. et al. GABAA Receptor-Mediated Tonic Depolarization in Developing Neural Circuits. Molecular neurobiology, 2014, vol. 49, no. 2, pp. 702—723. DOI: 10.1007/s12035-013-8548-x
- MacDermott A.B., Mayer M.L., Westbrook G.L., Smith S.J., Barker J.L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 1986, vol. 321, no. 6069, pp. 519—522. DOI: 10.1038/321519a0
- MacFabe D.F. et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behavioural brain research, 2007, vol. 176, no. 1, pp. 149—169. DOI: 10.1016/j.bbr.2006.07.025
- Martin L.J. et al. α5GABAA receptor activity sets the threshold for long-term potentiation and constrains hippocampus- dependentmemory.JournalofNeuroscience,2010,vol.30,no.15,pp.5269—5282.DOI:10.1523/JNEUROSCI.4209-09.2010
- Mazzone G.L., Nistri A. Modulation of extrasynaptic GABAergic receptor activity influences glutamate release and neuronal survival following excitotoxic damage to mouse spinal cord neurons. Neurochemistry International, 2019, vol. 128, pp. 175—185. DOI: 10.1016/j.neuint.2019.04.018
- Mead J., Ashwood P. Evidence supporting an altered immune response in ASD. Immunology Letters, 2015, vol. 163, no. 1, pp. 49—55. DOI: 10.1016/j.imlet.2014.11.006
- Meguid N.A., Hashish A.F., Anwar M., Sidhom G. Reduced serum levels of 25-hydroxy and 1, 25-dihydroxy vitamin D in Egyptian children with autism. The Journal of Alternative and Complementary Medicine, 2010, vol. 16, no. 6, pp. 641—645. DOI: 10.1089/acm.2009.0349
- Mehta A., Prabhakar M., Kumar P., Deshmukh R., Sharma P.L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. European journal of pharmacology, 2013, vol. 698, no. 1-3, pp. 6—18. DOI: 10.1016/j.ejphar.2012.10.032
- Merner N.D. et al. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia. Frontiers in cellular neuroscience, 2015, vol. 9, p. 386. DOI: 10.3389/fncel.2015.00386
- Mesbah-Oskui L. et al. Reduced expression of α5GABAA receptors elicits autism-like alterations in EEG patterns and sleep-wake behavior. Neurotoxicology and teratology, 2017, vol. 61, pp. 115—122. DOI: 10.1016/j.ntt.2016.10.009
- Moreno-De-Luca D. et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Molecular psychiatry, 2013, vol. 18, no. 10, pp. 1090—1095. DOI: 10.1038/mp.2012.138
- Mostafa G.A., Al-Ayadhi L.Y. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. Journal of neuroinflammation, 2012, vol. 9, no. 1, p. 201. DOI: 10.1186/1742-2094-9-201
- Mowery T.M. et al. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. International Journal of Developmental Neuroscience, 2015, vol. 40, no. 1, pp. 15—23. DOI: 10.1016/j. ijdevneu.2014.10.003
- Nelson S.B., Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron, 2015, vol. 87, no. 4, pp. 684—698. DOI: 10.1016/j.neuron.2015.07.033
- Olloquequi J. et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. Journal of Psychopharmacology, 2018, vol. 32, no. 3, pp. 265—275. DOI: 10.1177/0269881118754680
- Olsen R.W., Sieghart W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology, 2009, vol. 56, no. 1, pp. 141—148. DOI: 10.1016/j.neuropharm.2008.07.045
- Pajarillo E., Rizor A., Lee J., Aschner M., Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology, 2019, vol. 161, article no. 107559. DOI: 10.1016/j.neuropharm.2019.03.002
- Pardo C.A., Vargas D.L., Zimmerman A.W. Immunity, neuroglia and neuroinflammation in autism. International review of psychiatry, 2005, vol. 17, no. 6, pp. 485—495. DOI: 10.1080/02646830500381930
- Pascual O., Ben Achour S., Rostaing P., Triller A., Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proceedings the National Academy of Sciences of the United States of America, 2012, vol. 109, no. 4, pp. E197—E205. DOI: 10.1073/pnas.1111098109
- Patel D., Kharkar P.S., Nandave M. Emerging roles of system x - anti-porter and its inhibition in CNS disorders. Molecular membrane biology, 2015, vol. 32, no. 4, pp. 89—116. DOI: 10.3109/09687688.2015.1096972
- Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in cellular and infection microbiology, 2012, vol. 2, p. 86. DOI: 10.3389/fcimb.2012.00086
- Pokusaeva K. et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility, 2017, vol. 29, no. 1, article no. e12904. DOI: 10.1111/nmo.12904
- Raimondo J.V., Richards B.A., Woodin M.A. Neuronal chloride and excitability — the big impact of small changes. Current opinion in neurobiology, 2017, vol. 43, pp. 35—42. DOI: 10.1016/j.conb.2016.11.012
- Reuter E., Tafelski S., Thieme K. et al. Die Behandlung des Fibromyalgiesyndroms mit Gamma-Hydroxybuttersäure: Eine randomisierte, kontrollierte Studie [Treatment of fibromyalgia syndrome with gamma-hydroxybutyrate: A randomized controlled study] [published correction appears in: Der Schmerz, 2017, vol. 31, no. 4, pp. 407—412]. Der Schmerz [The pain], 2017, vol. 31, no. 2, 149—158. DOI: 10.1007/s00482-016-0166-x
- Rivero-Segura N. et al. Prolactin prevents mitochondrial dysfunction induced by glutamate excitotoxicity in hippocampal neurons. Neuroscience letters, 2019, vol. 701, pp. 58—64. DOI: 10.1016/j.neulet.2019.02.027
- Robertson A.E., David R.S.R. The sensory experiences of adults with autism spectrum disorder: A qualitative analysis. Perception, 2015, vol. 44, no. 5, pp. 569—586. DOI: 10.1068/p7833
- Rojas D.C. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. Journal of Neural Transmission, 2014, vol. 121, no. 8, pp. 891—905. DOI: 10.1007/s00702-014-1216-0
- Rowley N.M., Madsen K.K., Schousboe A., Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochemistry International, 2012, vol. 61, no. 4, pp. 546—558. DOI: 10.1016/j. neuint.2012.02.013
- Rubenstein J.L., Merzenich M.M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2003, vol. 2, no. 5, pp. 255—267. DOI: 10.1034/j.1601-183x.2003.00037.x
- Saad K. et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutritional neuroscience, 2016, vol. 19, no. 8, pp. 346—351. DOI: 10.1179/1476830515Y.0000000019
- Saleem T.H., Shehata G.A., Toghan R. et al. Assessments of Amino Acids, Ammonia and Oxidative Stress Among Cohort of Egyptian Autistic Children: Correlations with Electroencephalogram and Disease Severity [correction published in: Neuropsychiatric Disease and Treatment, 2020, vol. 16, p. 325]. Neuropsychiatric Disease and Treatment, 2020, vol. 16, pp. 11—24. DOI: 10.2147/NDT.S233105
- Sano C. History of glutamate production. The American journal of clinical nutrition, 2009, vol. 90, no. 3, pp. 728S—732S. DOI: 10.3945/ajcn.2009.27462F
- Schroer R.J. et al. Autism and maternally derived aberrations of chromosome 15q. American journal of medical genetics, 1998, vol. 76, no. 4, pp. 327—336. DOI: 10.1002/(SICI)1096-8628(19980401)76:4<327::AID-AJMG8>3.0.CO;2-M
- Sgadò P. et al. Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: implications for autism spectrum disorders. Experimental neurology, 2013, vol. 247, pp. 496—505. DOI: 10.1016/j. expneurol.2013.01.021
- Shao Y. et al. Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. The American Journal of Human Genetics, 2003, vol. 72, no. 3, pp. 539—548. DOI: 10.1086/367846
- Shimmura C. et al. Enzymes in the glutamate-glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism. Molecular Autism, 2013, vol. 4, no. 1, p. 6. DOI: 10.1186/2040-2392-4-6
- Sibson N.R. et al. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate—glutamine cycling. Proceedings of the National Academy of Sciences of the United States of America, 1997, vol. 94, no. 6, pp. 2699— 2704. DOI: 10.1073/pnas.94.6.2699
- Smaga I. et al. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part Depression, anxiety, schizophrenia and autism. Pharmacological Reports, 2015, vol. 67, no. 3, pp. 569—580. DOI: 10.1016/j.pharep.2014.12.015
- Smidkova M. et al. Screening of Novel 3α5β-Neurosteroids for Neuroprotective Activity against Glutamate-or NMDA- Induced Excitotoxicity. The Journal of steroid biochemistry and molecular biology, 2019, vol. 189, pp. 195—203. DOI: 10.1016/j.jsbmb.2019.03.007
- Soni N., Reddy B.V.K., Kumar P. GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacology, Biochemistry and Behavior, 2014, vol. 127, pp. 70—81. DOI: 10.1016/j.pbb.2014.10.001
- Tanous C., Gori A., Rijnen L., Chambellon E., Yvon M. Pathways for α-ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism. International Dairy Journal, 2005, vol. 15, no. 6-9, pp. 759—770. DOI: 10.1016/j. idairyj.2004.09.011
- Tebartz van Elst L. et al. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Molecular Psychiatry, 2014, vol. 19, no. 12, pp. 1314—1325. DOI: 10.1038/mp.2014.62
- Torrez V.R. et al. Memantine mediates astrocytic activity in response to excitotoxicity induced by PP2A inhibition. Neuroscience letters, 2019, vol. 696, pp. 179—183. DOI: 10.1016/j.neulet.2018.12.034
- Tyzio R. et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 2016, vol. 314, no. 5806, pp. 1788—1792. DOI: 10.1126/science.1133212
- Tyzio R. et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, vol. 343, no. 6171, pp. 675—679. DOI: 10.1126/science.1247190
- Uğur Ç., Gürkan C.K. Serum vitamin D and folate levels in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 2014, vol. 8, no. 12, pp. 1641—1647. DOI: 10.1016/j.rasd.2014.09.002
- Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 2005, vol. 57, no. 1, pp. 67—81. DOI: 10.1002/ana.20315
- Varman D., Soria-Ortíz M.B., Martínez-Torres A., Reyes-Haro D. GABAρ3 expression in lobule Xof the cerebellum is reduced in the valproate model of autism. Neuroscience letters, 2018, vol. 687, pp. 158—163. DOI: 10.1016/j.neulet.2018.09.042
- Vesce S., Rossi D., Brambilla L., Volterra A. Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation. International review of neurobiology, 2007, vol. 82, pp. 57—71. DOI: 10.1016/S0074-7742(07)82003-4
- Vinkhuyzen A.A. et al. Gestational vitamin D deficiency and autism-related traits: the Generation R Study. Molecular psychiatry, 2018, vol. 23, no. 2, pp. 240—246. DOI: 10.1038/mp.2016.213
- Wakefield A.J. et al. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands. Alimentary Pharmacology & Therapeutics, 2002, vol. 16, no. 4, pp. 663—674. DOI: 10.1046/j.1365-2036.2002.01206.x
- Whitney E., et al. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum. 2008;7(3):406-416. doi:10.1007/s12311-008-0043-y
- Yip J., Soghomonian J.J., Blatt G.J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta neuropathologica, 2007, vol. 113, no. 5, pp. 559—568. DOI: 10.1007/s00401-006-0176-3
- Yizhar O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 2011, vol. 477, no. 7363, pp. 171—178. DOI: 10.1038/nature10360
- Zareian M., Ebrahimpour A., Mohammed A.K.S., Saari N. Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electronic Journal of Biotechnology, 2013, vol. 16, no. 4, p. 1—16. DOI: 10.2225/vol16-issue4-fulltext-10
- Zurek A.A. et al. α5GABAA receptor deficiency causes autism-like behaviors. Annals of clinical and translational neurology, 2016, vol. 3, no. 5, pp. 392—398. DOI: 10.1002/acn3.303
Information About the Authors
Metrics
Views
Total: 4042
Previous month: 216
Current month: 107
Downloads
Total: 2896
Previous month: 49
Current month: 23