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Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by reduced social communication
and repetitive behaviors. The etiological mechanisms of ASD are still unknown; however, the GABAergic system has
received considerable attention due to its potential as a therapeutic target. Based on the fact that individuals with
autism demonstrate altered gene expression concomitant with impaired blood brain barrier (BBB), and gut barrier
integrities, so increased glutamate levels in the blood and platelets of ASD patients can be related to lower num-
bers of cerebellar GABAergic neurons, less active GABA-synthesizing enzymes, and decreased brain GABA levels.
Excitotoxic levels of released glutamate trigger a cascade of deleterious cellular events leading to delayed neuronal
death. According to our understanding of glutamate excitotoxicity, GABA supplementation could theoretically be
useful to treat certain autistic phenotypes. While there is still no effective and safe medication for glutamate-related
cell damage and death, combined efforts will hopefully develop better treatment options. Here I hypothesize that an
integrated treatment strategy with GABA supplements, regulation of chloride (CI-) and magnesium (Mg2+) levels,
vitamin D supplements, probiotics to enhance GABAA receptor and glutamate decarboxylase (GAD) expression,
and memantine to activate glutamate transporters and inhibit NMDA receptors, could collectively reduce glutamate
levels, maintain functional GABA receptors and thus treat repetitive behavior, impaired social behavior, and seizure
activity in individuals with autism.
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PaccrpoiictBa aytuctuueckoro crekrpa (PAC) — 910 HapyIeHust MCUXuIecKoro pa3BUTHS, XapaKTEePU3YIONTNECsT
CHU)KEHHMEM COIMAIbHOIO B3aUMOJICHCTBUS U TOBTOPSAIONIMM A 1ToBesienneM. Mexanusmbl atrosorun PAC Bee elie
HensBecTHLE oHaKo [AMK-aprudeckoii crcteme yessiercst 60IbIoe BHUMAHUE B CBSI3H C TEM, UTO OHA 00J1a/1aeT Mo-
TEHITNATIOM TepaneBTuIecKoit Mutienn. OCHOBBIBAsICh Ha TOM (haKTe, UTO Y JIFOJICH C ay TH3MOM OTMeueHa M3MEeHEHHAs
HKCIPECCHST TEHOB, COMYTCTBYIOMAS HAPYITEHIO TeMaTosHtedammdeckoro 6apbepa (I9B) u 1eq0cTHOCTH KUTITey-
HOTO Gapbepa, MOBBIIIEHHBII YPOBEHb IJIyTaMaTa B KpOBU U TpomOboImTax maiueHToB ¢ PAC MoskeT ObITh CBsSI3aH ¢
MEHBIIIM KOJTMYECTBOM MO3;KeuKOBbIX AMK-eprudecknx HelpoHOB, MeHee akTUBHBIMU [ AM K-cunTe3upytonmmun
dhepmenTamu u cankeHHbIM ypoBHeM TAMK B Mosre. DKcallTOTOKCHUHbBIE YPOBHU BBICBOOOKIECHUS TIyTaMaTa 3a-
MYCKAIOT KACKA/[ PA3PYIIUTEIbHBIX KIETOUHBIX COOBITHIL, IPUBOJISAIINX K OTCPOUEHHOU rubein HeiipoHoB. B cooTBeT-
CTBUU C HAIIUM [TOHUMaHUEM 3KcaiitoTokcnaHocTy raaytamara gobasku TAMK teopetnueckut MOTYT OBITH TIOJIE3HBI
[IPU JIEYeHU W OTPe/iesIeHHBIX (DeHOTUTIOB ayTu3Ma. X0Tst 9 (HEeKTUBHBIX U GE30MACHBIX TIPENAPATOB, IPEI0TBPAIIAI0-
I[UX BBI3BAHHBIE TJIYTAMATOM MOBPEKAEHUE U TUOEsb KIETOK, JI0 CUX MOP HE CYIECTBYET, Mbl HaJleeMCst, 4To 6iaro-
Napst COBMECTHBIM YCHUJIMSIM HaM YAacTCst pa3paboTarh JIydiiie BapUaHThl JiedeHrst. B naHHOM cTathe 1 BBIABUHYIA
TUTIOTE3Y O TOM, YTO UCIIOIb30BAHIE HHTETPUPOBAHHON CTpATETHH JieueHus ¢ npuMenenneM nobasok TAMK, pery-
aauein yposHs xjopuaa (Cl-) u maraus (Mg2+), nobaBkaMu BuTaMuHa D, IPOGHOTHKOB JIJIsT YCUJIEHUS DKCIIPec-
cun perienrtopos TAMK-A u rirytamariaekapbokcunassl (GAD), a Takske MeMaHTHHA JIJIS aKTHBAIUU TPAHCIIOPTEPOB
riyTamata 1 nHruouposaduss NMDA perenTopoB, MOKeT IPUBECTH K CHUKEHIIO YPOBHEI IyryTamMaTa, MojAepsKaTh
bynkmmonuposanue pertentopoB TAMK 1 TeM caMbIM BO3/IeiiCTBOBATDH HA TIOBTOPSIOIIEECS TTOBEJICHNE, HAPYIIEHUS
COIIATBHOTO B3aNMO/IEHCTBIS U CY/IOPOKHBIE TIPUTIAJIKN Y JIFO/IEH ¢ Ay TH3MOM.

Knrouesvte crosa: ayrusm; s5KCAUTOTOKCUYHOCTD TJIyTaMAaTa; raMMa-aMIHOMACJISTHAST KUCJIOTa; BUTaMuH [I; Kutied-
Hast MUKPOOHOTA.

Dunancuposanne. IToT NPoeKT huHAHCUPOBasics HaloHanibHOI 1IPOrpaMMoii B 00J1aCTH HAyKH, TEXHOJIOTMI U WHHOBAIMiL
(MAARIFAH), Topox nayku u texxosnoruu Koposst Abaysiasusa, Homep rpanta: 08-MED 510-02.
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Introduction

Autism spectrum disorder (ASD) is a highly
heterogeneous, lifelong neurodevelopmental disor-
der that clinically presented as social interaction
and communication impairments together with re-
stricted interests and stereotyped behaviors [34].
Its prevalence is growing; therefore, there is a need
to determine the key etiological mechanisms that
would facilitate the identification of predictive and
diagnostic markers that might help develop treat-
ments. There are multiple of etiopathological mech-
anisms attributed to autism; the most known being
systemic immune activation and excitotoxicity. It
is commonly believed that chronic inflammation is
the hallmark of many neurodevelopmental disor-
ders [81; 93] and research on autistic patients has
uncovered a number of immune dysfunctions [37;
87]. Neuroinflammation has been described in post-
mortem brain specimens of both young and old in-
dividuals with autism [56; 93; 122].

Progress is being made based on accumulat-
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ing evidence that genetic and environmental
risk factors for autism converge to disturb the
balance between glutamate-mediated excitatory
and y-aminobutyric acid (GABA)-mediated in-
hibitory neurotransmission; and this may help to
identify treatment targets for the disorder [18;
89; 104; 107].

The hypothesis that GABA can be targeted as
an appropriate means of treating autism is sup-
ported by the relatively high incidence of epilepsy
in patients suffering from autism, as well as the
high frequency of epileptiform activity observed
in the electroencephalograms (EEG) of autistic
patients [101].

Moreover, electrophysiological and behavioral
autism-like features have been observed in mice af-
ter blockade of maternal oxytocin signaling, which
is important for the early postnatal excitatory-to-
inhibitory shift of GABAergic signaling [119; 120].

Based on this information, the model of excita-
tion-inhibition imbalance is one of the leading hy-
potheses to explain the etiology of autism. There-
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fore, a precise and integrated adjustment of brain
metabolism through regulation of glutamic acid
and GABA could be used as treatment strategy for
autism.

We do not yet have a clear mechanism of action
regarding GABA supplementation and we have yet
to fully understand the role of GABA’s behavioral
effects, as well as its blood-brain barrier (BBB) per-
meability in humans. However, evidence from nu-
merous clinical studies strongly supports the thera-
peutic effects of GABA in the brain [16; 52; 72; 99].

Interlinked Metabolism of Glutamate
and GABA

It is well known that glutamate and GABA me-
tabolism is strongly interlinked, so a change in any
of the intermediate metabolite can affect both neu-
rotransmitters. Glutaminase as an enzyme cata-
lyzes the conversion of glutamate to glutamine, al-
lowing glutamine to be either stored in astrocytes
or converted to glutamate in both glutamatergic
and GABAergic neurons [103]. Between synap-
tic events, normal levels of glutamate and GABA
are kept low via permanent transporter-mediated
turnover through the plasma membrane [17; 19;
28; 111]. These transporters terminate synaptic
neurotransmission, enabling the reuptake of the
neurotransmitters. In excitatory neurons, gluta-
mate is transported into vesicles through vesicu-
lar glutamate transporters, whereas in inhibitory
neurons, glutamate is first transformed to GABA
by glutamic acid decarboxylase (GAD), and then
transported to vesicles via vesicular GABA trans-
porters. Upon release, both neurotransmitters are
taken up by high affinity transporters and returned
into neurons and surrounding glia to be reused.
Thus, GABA, glutamate, and glutamine are in
constant flux. In autism however, the levels of the
enzymes controlling glutamine-glutamate-GABA
cycles are altered and thus, glutamine-glutamate-
GABA metabolism is likely to be unusual in the
ASD brain [46; 128].

Among clinical samples, high concentrations
of glutamate and glutamine (Glx), and GABA in
the temporal lobe, and high levels of glutamate
in the auditory cortex have been directly related
to the severity of autistic phenotypes [22]. In-
creased anterior cingulate glutamate/creatine
and Glx have been associated with severe social
interaction and communication impairments [38;

117]. The hyper-glutamatergic hypothesis of au-
tism reported by Fatemi [47] suggests that lower
levels of the GAD enzyme, and increased num-
bers of astrocytes, which take up synaptic gluta-
mate to resynthesize glutamine and glutamate,
leads to excess cortical glutamate in autistic pa-
tients. The remarkably lower levels of the 65 and
67 kDa GAD isoforms in individuals with autism
may account for the reported increases of gluta-
mate in blood and platelets of autistic subjects
[42]. GAD deficiency may be due to, or associ-
ated with, abnormalities in levels of glutamate/
GABA, or transporter/receptor density in the
autistic brain.

Conversion of glutamate to glutamine by glu-
tamine synthetase requires ammonia, which help
to clear both molecules. It is well known that pa-
tients with liver dysfunction and children with
urea cycle disorders cannot efficiently detoxify
ammonia, inducing high levels of ammonia and
glutamine in the brain [48]. Liu et al. [75] re-
ported that autistic children had high brain am-
monia but low levels of glutamine, showing that
their serum glutamine levels were low and they
had impaired glutamate transporters. This was
supported Saleem et al [107] who recorded in-
creased levels of ammonia, a marked reduction
in urea concentration, and significant increases
in the glutamate/glutamine ratio in the plasma
of patients with autism compared with controls,
suggesting that the glutamate/glutamine cycle
was greatly impaired in these patients. Addition-
ally, Liu [75] identified a panel of 7 urinary amino
acid indicators that could discriminate between
urine samples from ASD and healthy control chil-
dren. Collectively, they find a possible imbalance
between excitatory and inhibitory amino acid
metabolism in ASD children. The significantly al-
tered urinary amino acid indicators could there-
fore be potential diagnostic biomarkers for ASD.

Noticing high plasma ammonia and high GABA
in blood and urine of an autistic boy, Cohen [29]
noted plasma GABA levels are positively correlated
with those of plasma ammonia. Dhossche et al [33]
found high plasma GABA in autistic children aged
between 5 and 15 years old. It is also very interest-
ing to note that fever increases CSF taurine but de-
creases GABA [75].

It has been suggested that ammonia produced
by the gut yeast Candida albicans forms a metabo-
lite that works like GABA in autistic brains [24]
Wakefield et al. [126] suspected that gut bacteria
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in children with autism generate much higher am-
monia than their impaired liver can detoxify. This
might happen, for example, if an oral antibiotic
was given and induces overgrowth of pathogenic
bacteria. Another pathogenic consequence is in-
terrelated to glutamate is vaccination. Hoernlein
[63] noted that vaccines, specifically those against
measles, mumps, rubella (MMR), are usually en-
closed in hydrolyzed gelatin, as a rich source of
glutamate to reserve the viruses. In the presence of
low-affinity glutamate transporter that exchange
cystine and glutamate between the interior and
exterior of the cell in a 1:1 ratio, extracellular glu-
tamate usually accumulates, obstructs the cystine-
glutamate exchange, and resulting in the reduction
of cell stores of cystine as a major precursor of sul-
fur amino acids and glutathione. This may explain
the association between glutamate excitotoxicity
and oxidative stress as two etiological mechanisms
of autism [39].

The GABAergic System in Autism

The role of the GABAergic system in autism has
received a large amount of attention due to several
factors. Autism studies have reported (1) reduced
numbers of cerebellar GABAergic Purkinje cells es-
pecially in the posterior lobe [8; 127]; (2) lower ac-
tivity levels of key synthesizing enzymes (GAD65
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and GADG67) in the cerebellum and parietal cortex
[46], and decreased levels of GAD67 in Purkinje
cells [128]; (3) neuropathology in the deep cer-
ebellar nuclei, a brain region rich with GABAer-
gic neurons, with males more affected than females
[23; 65; 88]; (4) reduced density of y-Aminobutyric
acid type A (GABAA) receptors in specific areas of
the hippocampus [15; 70; 123]; (5) the most com-
mon chromosomal abnormality in autism is an
alteration(s) in chromosome 15q11-q13, a region
that contains three GABAA receptor subunit can-
didate genes for autism [108; 110], including the
GABAA3 subunit receptor gene [79]; and (6) el-
evated plasma GABA in autistic children aged be-
tween 5 and 15 years [39; 42].

GABAA receptors are heteropentameric iono-
tropic receptors made of 19 different subunits. The
majority contain two a, two B and one y or & subunit
[91]. GABAA receptors that contain the a5 subunit
(a5GABAA a5GABAA) are important because of
their limited distribution and distinctive physi-
ological and pharmacological characteristics [28;
74]. Extrasynaptic a5GABAA receptors are highly
expressed in the hippocampus and at reduced lev-
els in the cortex, and hypothalamus. Activation of
these receptors creates a stimulant inhibitory cur-
rent that moderates excitability and synaptic plas-
ticity [26; 79]. a5GABAA receptors also play a tro-
phic role that regulates the development of neural
circuits [74].
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It is very interesting to note that Gabra5—,/—
knocked out mice missing the a5 subunit gene,
clinically presents multiple autism-like features,
such as impaired social interaction, abnormal cog-
nitive and memory functions, and sleep distur-
bances [85; 131]. Actually, the most common copy
number variant in autism is a duplication of the
q11.2—13 region of chromosome 15 [86], which
encodes for the a5, B3, and y3 subunits of the GA-
BAA receptor [86]. Rare variants in the gene that
encodes the a5 subunit have also been identified
in autistic patients [131]. These findings suggest
that dysfunctional a5GABAA receptors could be
contributed to glutamate excitotoxicity as etio-
logical mechanism in autism. The role of GABAA
receptors in the etiology of autism was confirmed
by Han et al. [61] who showed that low doses of
benzodiazepines, as a GABAA receptor agonists,
increase inhibitory neurotransmission through
positive allosteric modulation of postsynaptic GA-
BAA receptors in a rodent model of autism. This
was concomitant with improved social interaction,
reduced repetitive behavior, much better cognitive
ability. In contrast, negative allosteric modulation
of GABAA receptors impaired social behavior in
C57BL/6] and 129Sv] wild-type mice.

Neuronal chloride control plays a role in the
dynamic regulation of GABAergic inhibition both
during and after brain development. This regula-
tion is mostly reliant on two cation chloride co-
transporters (CCCs), the K*/Cl- co-transport-
er KCC2, and the Na'/K*/Cl- co-transporter
NKCCI1, whose activity can decrease or increase
neuronal chloride levels respectively. Ben-Ari et
al. [10] observed an elevated intracellular chloride
(CI) levels and excitatory GABA early during ges-
tation followed by a perinatal excitatory-to-inhib-
itory shift. This mechanism is found in many brain
areas of different animal species which suggest
that it happens early in life. It is mediated mostly
by the developmentally controlled gene expression
of KCC2 and NKCC1, which are exporter and im-
porter of Cl respectively. In spite of the straight-
forward function of GABA receptors in the trans-
mission of information from the presynaptic to
the postsynaptic neurons, some other factors are
involved. Among these is the difference in mem-
brane potential between the postsynaptic dendrite
against the reversal potential for chloride ions.
Based on this, GABA can evoke either depolar-
izing (excitatory) or hyperpolarizing (inhibitory)
currents. This can be also affected by the local dis-

tribution of large anions, such as glutamate. Three
conditions can be observed in which the reversal
potential of chloride ions is below, above, or equal
to the membrane resting potential. Low intracel-
lular chloride levels can induce the influx of more
negatively charged ions is low which can enhance
the inhibitory function of GABAA receptors. At
higher chloride levels, its reversal potential is
above the resting potential of the cell, enhancing
the excitatory effects of GABA. When the reversal
potential for chloride equals the resting potential
of the cell, stimulation of the GABAA receptors
will cause no net flux of chloride and no alteration
of the membrane potential. As the excitatory po-
tential for GABA and the resting membrane po-
tential are in relatively close proximity, small rises
in Cl- can shift the polarity of GABAA currents
from inhibitory to excitatory, highlighting the im-
portance of maintaining low CI™ [66; 76; 98]. Stud-
ies are now beginning to examine the connection
between NKCC1 and KCC2 and the etiology of
autism. Mutations in the C-terminal regulatory
domain of KCC2 were found to be related with
autistic phenotypes [30; 63; 84]. Several models of
genetic disorders strongly associated with autism
have been linked to alterations in NKCC1/KCC2
ratios [35]. Exposure of rats to valproate (VPA)
during gestational period has shown a significant
delay in the shift of GABA from excitatory to
inhibitory [62]. Oral treatment with the selec-
tive NKCC1 antagonist bumetanide in pregnant
VPA- treated rats immediately before delivery has
shown a remarkable restoration of the effects of el-
evated Cl- and excitatory GABA signaling in the
new born and can reduce the behavioral problems

at childhood [102].

Glutamate Excitotoxicity as an Etiological
Mechanism in Autism

Glutamate excitotoxicity arises when glutamate
receptors (GluRs) are overstimulated with an ex-
cessive amount of the excitatory neurotransmitter,
glutamate, followed by the increase of intracellular
Ca?" ions, finally lead to neuronal death [90].

Several studies have reported that glutamate
excitotoxicity is one of the repeatedly recorded
etiological mechanisms in autism. The GluRs
are classified as ionotropic receptors, or metabo-
tropic receptors (mGluRs) [43; 44]. Each type is
composed of a variable association of subunits,
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which determines their biophysical and physi-
ological properties. N-methyl-D-aspartate re-
ceptor (NMDAR) is an ionotropic GluR that is
classically composed of a tetrad arrangement of
subtype receptor subunits — GluN1, GluN2A-D,
and GluN3A and B. During development, there
are significant modifications in the composition
of these subunits. In the mammalian brain, func-
tional NMDARs require a GluN1 subunit associ-
ated with one or more GluN2 subunits. Magne-
sium (Mg?") binding sites inside the NMDAR
regulate its function, with Mg?" playing a cru-
cial role as a voltage-dependent channel blocker.
Upon depolarization, the Mg?* blockade is re-
leased, permitting the action potential to go on.
Sensitivity to Mg?" blockade varies with subunit
ratio composition. Mg?" ions mainly oppose Ca?"
ions, and Mg?" deficiency induced brain seizures
can be avoided by treating with NMDA-receptor
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antagonists [41]. Since Mg?" is required for many
brain enzymes, a striking decrease of Mg?" in a
propionic acid (PPA)-induced rodent model of
autism was recently related to glutamate excito-
toxicity as a persistent autistic feature in juvenile
rats [41; 50; 78]. When Mg?" deficiency occurs,
excessive Ca*" and glutamate can induce synap-
tic dysfunction in the brain, which can manifest
as repetitive behavior, impaired social behavior,
seizure activity, and hyperactivity, as previously
reported [3; 31; 32].
a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid receptors (AMPARs) are ionotropic
receptors composed of GluA1-4 subunits (GluR1-4
by older nomenclature). The presence of the GluA2
(GluR2) subunit in the AMPAR blocks Ca®" en-
try into the neuron [14]. AMPAR sensitivity is
regulated by whether they contain or lack a GluA2
(GluR2) subunit when they are transported to the
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neuronal membrane. The latter causes the AMPAR
to be Ca’ permeable, and trafficking of GluA2-
lacking AMPARs to the synaptic unit increases
glutamate-induced neuronal activation, which is
observed in long-term potentiation (LTP), plastici-
ty, and during neurodevelopment. Under patholog-
ical conditions, such as inflammation, the activity
of GluA2-lacking AMPARSs can trigger excitotoxic
damage [50; 71].

Edfawy et al. [36] studied the functional role of
Gprasp2, a gene linked with neurodevelopmental
disorders that encodes a protein that contributes
to post-endocytic organization of G-protein-cou-
pled receptors. They observed that Gprasp2 dele-
tion leads to clinically presented ASD features and
changes in synaptic neurotransmission in mice. Ma-
nipulating the levels of Gprasp2 expression reduced
the surface availability of mGluR5 and produces al-
terations in dendritic complexity, spine density and
synaptic maturation. These findings demonstrate
a role for Gprasp?2 in glutamatergic synapses and
suggest a possible mechanism by which this gene is
linked to autism.

Astrocyte-mediated clearance of free gluta-
mate from synaptic cleft is mostly accomplished
through two astroglia-specific, high-affinity glu-
tamate transporters called excitatory amino acid
transporters 1 and 2 (EAAT1 and 2), classified
in rodents as glutamate aspartate transporter
(GLAST) and glutamate transporter-1 (GLT-1),
respectively. These transporters use the electro-
chemical gradients across the plasma membranes
as motivating forces for glutamate transfer into
the intracellular compartment [4]. Convention-
ally it was thought that following uptake into
astrocytes, glutamate is converted into non-toxic
glutamine by glutamine synthetase, which is then
released into the intercellular fluid and taken
into neurons to be used for glutamate recycling
in order to replenish the neurotransmitter pool
[112]. However, more recent data suggest that,
on some physiological and pathological circum-
stances, astrocytes are capable of releasing glu-
tamate via multiple mechanisms [25; 124]. Sev-
eral mechanisms connecting astrocyte glutamate
release with the excitotoxicity present in autism
have been described, mainly involving microglia
activation [11; 94; 115]. Based on their crucial
role in neurological disorders, EAATSs are targets
for the development of new treatment strategies
for brain diseases [59; 115] and a recent study has
shown that B-lactam antibiotics can remarkably

increase the gene expression of EAAT2/GLT-1 in
a rodent model of autism [3].

High affinity glutamate (L-Glu) transporters
facilitate L-Glu re-uptake into neurons and glial
cells [20]. These transporters combine the uptake
of L-Glu with the exchange of one H* ion, one K*
ion, and 3 Na* ions, [6]. Impaired glutamate and
glutamine transporters are repeatedly reported
in autism [6]. Cystine is an essential amino acid
for the biosynthesis of the reduced glutathione
(GSH), and its uptake requires the cystine/gluta-
mate exchanger SLC7A11 [95]. This transporter
catalyzes the uptake of one molecule of cystine
with the release of one molecule of L-Glu. As it is
highly expressed in astrocytes but not in neurons,
neurons are dependent on astrocytes for the pro-
duction of GSH. Once cystine enters astrocytes, it
forms the tripeptide GSH. Synthesized GSH can
be released into the extracellular space followed
by enzymatic catabolism, eventually leading to the
formation of cysteine. Cysteine is then taken up by
neurons through SLC1A1 transporter to synthe-
size GSH. GSH depletion as a pathological feature
in autism could influence the capacity of cells to
scavenge free radicals, making them susceptible to
accumulate reactive oxygen species (ROS), pos-
sibly injuring of the L-Glu transporter SLC1A2,
especially in motor neurons. Together with addi-
tional alterations, including activation of caspases
as pro-apoptotic markers, this will finally lead to
neuronal death.

Ford et al. [ 53] revealed that strong autistic ten-
dencies are associated with the GABA+ concentra-
tion and an increased glutamate/GABA+ ratio in
the lower right hemisphere of the brain. Previous
reports also show that increased excitatory and re-
duced inhibitory neurotransmission is implicated
across the autism spectrum, particularly in the so-
cial domain [54; 55; 68; 129]. These findings are
consistent with evidence from animal studies show-
ing that social deficits caused by increased gluta-
mate/GABA+ ratio can be reduced by increasing
in the inhibitory neurotransmission of GABAergic
neurons [27; 109; 129].

To understand the role of microglia activation in
excitatory/inhibitory imbalance in autism, Lieber-
man et al [73] proposed two different hypotheses. It
is well known that the healthy developing brain ini-
tially form additional, inappropriate excitatory syn-
apses. These unnecessary or less active synapses are
pruned by microglia, and only functionally mature
synapses are conserved [12]. Their first hypothesis
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stated that in autism, microglia may fail to detect
and prune immature synapses, which would result
in the conservation of an excess number of gluta-
mate excitatory synapses. Their second hypothesis
stated that over-activated microglia may selective-
ly prune GABAergic inhibitory synapses.

These hypotheses are consistent with the idea
that disturbance of microglial activation by immune
stimulation such as maternal infection during a crit-
ical period can deleteriously affect synaptogenesis
[13]. Pruning by microglia is activity dependent,
which suggests that excitotoxic stimulation during
prenatal or early post-natal periods could also ad-
versely affect brain architecture. Bilbo et al. have
shown that activation of brain microglia early in life
can have long-term consequences on brain function,
even into adulthood [12; 13].

Vitamin D Deficiency and Imbalanced
Excitatory/Inhibitory Neurotransmission
in Autism

It is well known that autism is more prevalent
in areas of relatively poor ultraviolet light exposure,
such as urban areas, areas with high air pollution,
and areas of high precipitation [45]. Animal stud-
ies have confirmed that severe vitamin D deficiency
during pregnancy negatively affects numerous pro-
teins which contribute to brain development, re-
sulting in pathological alterations in neonatal ani-
mals similar to those seen in autistic patients [60;
125]. Meguid et al. [82] measured serum levels of
vitamin D in Egyptian children with autism com-
pared to healthy controls, and reported that the lev-
el of vitamin D3 was remarkably lower in autistic
patients. Multiple studies have confirmed vitamin
D deficiency as an etiological mechanism in autism
[1; 40; 51; 57; 87; 125], whereas only two studies
have shown no difference between children with
autism and controls [121].

Based on this, vitamin D supplementation for
autistic children with insufficient vitamin D is nec-
essary. Saad et al. [105] reported that vitamin D
supplementation can help as a treatment strategy
in autism. Their cohort study of autism spectrum
disorder children receiving vitamin D supplemen-
tation at a dose of 300 U /kg/day showed that chil-
dren with a final vitamin D3 serum level below 30
ng/ml demonstrated no improvements in clinical
presentation, 31/102 children with final vitamin D3
serum levels between 30—39 ng/ml had decreased

AyTV3M 1 HapyLleHus pa3smTia. T. 18. Ne 3 (68). 2020

childhood autism rating scale scores (CARS) by
1.5—4.5 points, while those with a final serum vita-
min D3 levels above 40 ng/ml had decreased CARS
by 3.5 to 6.5 points. This seems to suggest that the
lower limit for vitamin D levels in autism treatment
is 40 ng/ml, or at least above 30 ng/ml. Feng et al
[49] showed that autistic phenotypes were greatly
improved after 3 months of vitamin D being either
intramuscularly injected or orally supplemented,
with younger patients being more responsive.
Moreover, animal studies have shown that vitamin
D demonstrates a protective rather than therapeu-
tic effect on PPA-induced neurotoxicity in rats, as
there was a remarkable amelioration of the impaired
interferon-gamma IFN-y, serotonin, Glutathione-s-
transferase, and DNA damage [2]. Of course, addi-
tional large scale, international multi-center studies
are essential to explore the relationships between
the clinical response to vitamin D supplementation,
long-term effect of vitamin D supplementation, and
the biochemical changes in autistic patients.

Epidemiological studies have revealed that vi-
tamin D deficiency is associated with a wide range
of neuropsychiatric disorders, including autism
[58; 60; 67; 69]. It is known that vitamin D defi-
ciency significantly reduces the levels of glutamic
acid decarboxylase, the key enzyme in GABAer-
gic interneurons, and glutamate and glutamine in
mouse brain tissue [60]. This suggests that glu-
tamate excitotoxicity, and impaired glutamate-
glutamine-GABA cycle in autism can be corrected
through the treatment of vitamin D insufficiency
or deficiency [125].

To validate this suggestion, we can consider the
recent study by Krisanova et al. [69] who showed
that vitamin D3 deficiency disturbs synaptic neu-
rotransmission by affecting both Ca*-dependent
and Ca’-independent processes. The Ca?'-de-
pendent action of vitamin D3 deficiency was as-
sociated with a decrease in exocytotic release of
glutamate and GABA, presumably caused by mal-
functioning voltage-gated Ca?* channels. The Ca*'-
independent action of vitamin D3 deficiency was
associated with a decrease in the expression of glu-
tamate and GABA transporters that in turn result
in the decrease of glutamate and GABA reuptake.
Their main finding demonstrates that vitamin D3
deficiency could be and etiological mechanism in
autism by contributing to an impaired glutamate/
GABA transporter expressions and excitation/in-
hibition imbalance.
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Fig. 3. Protein expression of EAAC-1 and GAT-3 transporters (UP) and release of GABA and glutamate from nerve terminals
(Down) in control and vitamin D3-deficient rats (Modified from Krisanova et al., [70])

Role of Microbial Glutamate
and Gaba sSignaling in Autism

Microbial endocrinology concerns the role of
microorganism-produced neurochemicals such as
GABA, glutamate, and serotonin, as a common lan-
guage that allows crosstalk between microbe and
host. Understanding the gut microbiota—brain axis
in humans as a bidirectional cross talk system that
links the gut with the brain through several path-
ways including endocrine, immune, and neural,
might open the road toward the use of neurochem-
ical-producing probiotics as a therapeutic strategy
to treat autism.

The impaired methylation capacity reported in
autism may be related to the imbalanced GABA/
Glu ratio in autism. Impairment of the methylation
pathway prevents the use of folate, which is broken
down into glutamate. The Krebs cycle is critical for
methylation, and can become impaired in a variety
of ways, such as vitamin B deficiency, the presence
of heavy metals, and toxins from bacteria or Candida
[7]. Candida overgrowth is known to occur in autis-
tic patients [64; 65]. If methylation is impaired, then
it is even more important to manage glutamate levels.

54

Lactobacillus plantarum, L. paracasei, L. lactis,
Corynebacterium glutamicum, Brevibacterium lacto-
Jfermentum, and B. flavum are among the bacterial
strains which are capable of producing glutamate
[116; 130]. A study has revealed that about 15% of
lactic acid bacteria strains isolated from Asian fer-
mented foods are glutamate producers [96]. Both
Gram-positive and Gram-negative bacteria such as
E. coli and Pseudomonas can produce GABA via the
decarboxylation of glutamate catalyzed by GAD.
This enzyme has been found to be associated with
pH homeostasis and the generation of metabolic en-
ergy [9].

Amongst the microorganisms that are com-
monly identified as health-promoting probiotics,
one Lactobacillus strain and four strains of Bifi-
dobacterium isolated from the human intestine
have been reported to be able to produce GABA
[97]. Furthermore, an analysis on metagenomic
data from the human microbiome project suggests
that genes encoding GAD could be present in a
significant proportion of human gut microbiota
[21]. Real time PCR revealed decreases in both
the Lactobacillus and Prevotella in both male and
female Shank3 knockout mice, a genetic model of
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autism, compared to wild type mice. Moreover, ex-
amination of stool and colon microbiota of normal
healthy female mice revealed a significant increase
in genera and species of Lactobacillus compared to
males. This suggests that higher levels of Lactoba-
cillus in female mice could act as a protective fac-
tor and may explain the sex bias of autism towards
males. Previous studies have suggested a possible
connection between Lactobacillus, autism-related
behaviors, and GABAergic function. In particular,
Bravoetal. [21] determined that Lactobacillus may
regulate GABA receptor expression in the brain
through secretion of GABA. In Shank3 knockout
mice, GABA receptor expression is particularly
affected in multiple brain regions, including the
hippocampus, which is also one of the regions that
have been shown to be affected in ASD patients.
Pearson correlation analysis between levels of L.
reuteri, L. brevis, L. ruminis and GABA receptor
levels revealed specifically that the abundance
of L. reuteri correlated significantly with expres-
sion of each of the three GABA receptor sub-units
(GABARA1, GABARA2, and GABARA3).

Therapeutic Targets of Glutamate
Excitotoxicity as Rational Treatment
Strategy

1. Glutamate transporters GLAST/GLT-1

Recently Pajarillo et al. [92] reported that
GLAST/GLT-1 may be dysregulated at the ge-
netic, epigenetic, transcriptional or translational
levels, leading to high levels of extracellular gluta-
mate and excitotoxicity. Accordingly, understand-
ing the regulatory mechanisms of GLAST/GLT-1
has been highlighted as a means to develop thera-
peutic targets for the treatment of autism [3; 92].
Pharmacological agents such as p-lactam antibiot-
ics, estrogen/selective estrogen receptor modula-
tors (SERMs), growth factors, histone deacetylase
inhibitors (HDACI), and translational activators
have presented noteworthy effectiveness in increas-
ing the expression and function of GLAST/GLT-1
and glutamate uptake both in vitro and in vivo [92].
Torrez et al. [118] reported neuroprotective effects
of memantine (MN), a glutamatergic NMDAR
channel blocker. The drug could prevent the in-
crease in cerebrospinal fluid (CSF) glutamate levels
and cognitive decline in treated rats. It decreased
glutamate uptake in the hippocampus and increased
the release of S100B protein in the CSF in response
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to okadaic acid (OKA)-induced neurotoxicity.
This identifies a promising neuron-astrocyte cou-
pling protective mechanism, and sheds light on as-
trocytes as potential targets for treating glutamate
excitotoxicity.

2. Oxidative stress:

Oxidative stress and related mitochondrial
dysfunction are directly related to glutamate ex-
citotoxicity in autism. Through the use of mul-
tiple regression analysis, El-Ansary [39] showed
that high levels of lipid peroxidation (LPO), a
marker of oxidative stress, together with low-
er enzymatic and non-enzymatic antioxidants
(GSH, GSH/GSSG, thioredoxin, peroxiredox-
ins), were related to glutamate excitotoxicity,
presented as glutamate, glutamine, glutamate/
glutamine ratio, and glutamate dehydrogenase.
This suggests that oxidative stress could be a tar-
get to treat glutamate excitotoxicity related phe-
notypes in autistic patients [5; 113].

LPO products affect the electron transport chain
in the inner membrane of the mitochondria, leading
to the loss of the membrane potential (A¥m) and
boosting the generation of ROS, such as superox-
ide anion and hydrogen peroxide [83]. Although,
neurons have strong antioxidant defenses, such
as peroxiredoxins, superoxide dismutase enzymes
(SODs) such as Cu*'/ Zn2*-SOD (SOD1), Mn?**-
SOD (SOD2), glutathione peroxidase, and catalase
(in low amounts), their function is greatly compro-
mised in autism [100]. Recently, Rivero-Segura et
al [100] assessed the probable antioxidant effect of
prolactin (PRL), a hormone secreted by numerous
cells and tissues including the mammary glands,
T-lymphocytes, and hypothalamus. They proved
that PRL augments the activity and amount of the
antioxidant SODs and lowers LPO as marker of
oxidative stress, which is repeatedly reported to be
significantly higher in autistic patients. Moreover,
they demonstrate that PRL prevents mitochondrial
dysfunction induced by glutamate and significantly
ameliorates membrane potential (A¥m) of dysfunc-
tional mitochondria which help to suggest its effec-
tiveness as treatment option. Their related findings
are presented collectively in Fig. 4.

3. Inactivation of NMDAR

and activation of mGlu receptors:

Excessive activation of NMDARs leads to the
accumulation of intracellular Ca?* and consequent
neuronal death [131]. Many compounds, includ-
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ing memantine and neurosteroids, are able to tar-
get glutamate toxicity through the modulation of
NMDARs. 20-ox0-5B-pregnan-3a-yl sulfate (preg-
nanolone sulfate, PAS) is an endogenous neuros-
teroid that inhibits NMDAR currents. Glutamater-
gic NMDAR has also been targeted with multiple
synthetic neurosteroids [80; 114]. Among the stud-
ied compounds, the 3a, 5p-pregnanolone glutamate
(PAG) -like steroid compound (Fig. 5) demonstrat-
ed the most promising NMDAR-mediated neu-
roprotective effect. This suggests it could act as a
therapeutic agent for improving glutamate-related
autistic phenotypes by decreasing Ca?* level, scav-
enging ROS, and preventing glutamate-induced
caspase-3 activation.

It is very interesting to note that functional
GABAA receptors tend to cluster; overstimulation
of glutamate NMDA receptors by high glutamate
concentrations leads to calcium influx and the loss

of GABAA receptor-clustering, which negatively
affects the inhibitory effect of GABA. Glutamate
can also bind to the mGluR receptor to induce the
release of internally-stored calcium into the cyto-
sol of the neuron. This calcium can, in turn, restore
the clustering of postsynaptic GABAA receptors by
interacting with protein kinase C. These findings
demonstrate that glutamate signaling is activated
by distinct receptors and calcium signaling pat-
terns, which oppose the control of inhibitory GABA
synapses (Fig. 6).

4. Activation of GABAergic receptor:

The release of excitotoxic levels of glutamate
triggers a cascade of events leading to neuronal
death. This phenomenon involves imbalance be-
tween excitation and inhibition. Mazzone and Nistri
[80] hypothesized that augmenting the inhibitory
network should prevent excitotoxicity and provide
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Fig. 4. Therapeutic effects of prolactin through amelioration of glutamate induced mitochondrial dysfunction,
lipid peroxidation, and SOD antioxidant enzyme. JC-1 is a mitochondrial membrane potential (A¥m) sensor, which
emits fluorescence at 590 nm when the mitochondrion is polarized (functional) and at 530 nm when mitochondrion is
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Fig. 5. Chemical structure of 30, 5p-pregnanolone glutamate (PAG)-like steroid compound tested for a neuroprotective effect
against glutamate-induced excitotoxicity
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caspases as pro-apoptotic proteins, and finally leading to autistic features

neuroprotection. They proved that glutamate re-
lease induced by kainate was intensely decreased
by the allosteric GABAA modulator midazolam
(10 nM) or the GABA agonist 4,5,6,7 — tetrahy-
droisoxazolo [5,4-c|-pyridin-3-ol (THIP; 10 uM),
leading to neuroprotection.

Conclusion

This work presents evidence of glutamate exci-
totoxicity’s involvement in autism, making it a po-
tentially viable treatment strategy in ASD. Correc-
tion of imbalanced Glut/ GABA ratio in individuals
with autism may be tried at different levels through
the use of multiple targets such as: 1) activation of
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GLAST/GLT-1 to increase glutamate reuptake;
2) amelioration of oxidative stress; 3) inactivation
of NMDAR and activation of mGlu receptors to
induce the proper function of GABA receptors; 4)
supplementation of GABA; 5) use of GABA and
GAD producing probiotics such as lactobacillus
and bifidobacterial; and 6) activation of GABAer-
gic receptors. Collectively, these targets can help to
lower glutamate levels and thus induce the proper
function of GABA receptors, which make GABA
supplementation a successful and promising treat-
ment strategy.

Future research in this direction will help to
design specific drugs targeting these signaling pro-
teins and possibly modulate the expression dynam-
ics of glutamate NMDAR and mGlu receptors,
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transporters, and GABA receptors for therapeutic
application in autism.

Further studies using the optimal animal mod-
el followed by clinical trials are recommended to
prove the safety and efficacy of the suggested strat-
egy in order to improve the success of translational
research and future clinical applications.
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