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Abstract 
 

Statistical parameters of vibration data distributions provide a remarkable source of information in condition 

monitoring. The assumption of normality leads to comparatively simple description within the framework of 

classical statistics. However, due to the presence of outliers and heavy-tailed distributions, this approach is 

often unacceptable. In such cases, robust methods prove superior. The paper is focused on applying robust 

statistics in analyzing vibration data dispersion and correlation for the purpose of lifetime consumption esti-

mation. This approach is suitable for large rotating machines operated in an industrial plant environment and 

characterized by significant influences of control parameters and interference. It is shown that robust meth-

ods yield results that are easier to interpret from both qualitative and quantitative viewpoints. Examples re-

ferring to large steam turbines operated by utility power plants are given; however, certain results can be 

generalized over a broader class of rotating machines or even diagnostic objects. 

 

__________________ 
 

Keywords: Robust statistics, vibration analysis.  
 

1. INTRODUCTION 
 

Vibration-based symptoms are extremely important in monitoring technical condition of virtually 

all types of rotating machinery, especially large and complex units, e.g. turbo-generators, large fans 

or compressors. This is justified by their high information content, non-intrusive nature and com-

paratively well-developed data acquisition and processing procedures. The most straightforward 

approach consists in analyzing vibration patterns recorded at a certain moment on the basis of a 

purpose-developed diagnostic model. Information on the object condition is, however, also con-

tained in time histories of certain vibration components. As pointed out in References
[1,2]

, a vibra-

tion component evolution type and relevant timescale (the latter varying within a broad range, from 

seconds to months) contain information on a fault type and thus are useful already at the qualitative 

diagnosis stage. More detailed analysis of vibration time histories becomes even more important 

when it comes to quantitative assessment and is mandatory for a prognosis. 

Theoretical considerations based on the energy transformation and dissipation processes
[3]

 

yield a symptom time history in the form of a continuous, smooth and monotonically increasing 

function. In practice, however, such approximation may be accepted only for fast-developing faults 

that strongly influence vibration patterns. More typically, a vibration time history recorded with a 

real object is an increasing function on which considerable fluctuations are superimposed. An ex-

ample is shown in Figure 1. Large rotating machines usually generate broadband vibration and rela-

tive magnitude of these fluctuations depends on frequency, being substantially larger for so-called 

blade components, i.e. those produced by interaction between fluid-flow system and medium 

flow
[4]

.  
© Tomasz Gałka, 2011. 

 

mailto:tomasz.galka@ien.com.pl


Application of robust statistics in vibration time histories analysis 

 

 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of vibration time history: K-200 unit, front high-pressure turbine  

bearing, vertical direction, 8 kHz band. Dashed line represents exponential fit. 

 

In general, these fluctuations result from the influence of control parameters and interference in ac-

cordance with a relation that is fundamental for technical diagnostics: 
 

S() = f[X(), R(), Z()]  ,                                            (1) 
 

where S, X, R and Z are vectors of symptoms, condition parameters, control and interference, re-

spectively, and  denotes time. 

For a given object operated at some fixed location, control and interference parameters may 

be considered random variables. Therefore, any observable symptom S  S may also be analyzed 

from the statistical point of view. This has led to the concept of statistical symptoms (or, more pre-

cisely, meta-symptoms). In particular, it has been shown
[5]

 that a measure of symptom value disper-

sion determined within a ‘window’ that is moved along the time axis (see Figure 2) depends on 

condition parameters and is therefore compliant with the diagnostic symptom definition (this will be 

dealt with in more detail in Section 3). The approach referred to as the classical one
[6]

 is based on 

the assumption of approximate normality; hence standard deviation was the first dispersion measure 

used
[7,8]

. However, as it is clearly illustrated by Figure1, vibration time histories usually exhibit 

pronounced outliers and therefore distributions are typically of the heavy-tailed type. In fact, this 

observation is implicitly contained in results of rather early model considerations, wherein Weibull 

and Fréchet symptom operators have been shown to be applicable
[3,9]

. Elimination of outliers on a 

basis of some pre-defined criteria is obviously possible
[10]

, but relevant procedures inevitably in-

volve a certain degree of subjectivity. 
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Figure 2. The idea of statistical symptom determination: parameters pertaining to measured 

symptom value distribution are determined within a time window  . 

 

There is thus a need for an approach that would yield reliable estimation of statistical parameters 

also in the presence of outliers. Such possibility is offered by robust or resistant methods. 

 

2. OBJECTS AND MEASUREMENT DATA 
 

In order not to break up the considerations that will follow, a short description of objects and meas-

urement data acquisition is provided first. 

All vibration data have been obtained with large steam turbines operated at utility power 

plants. Absolute vibration velocity 23% CPB (constant-percentage bandwidth) spectra have been 

recorded at turbine bearings and casings during steady-state operation. Amplitudes in frequency 

bands determined on the basis of turbine vibrodiagnostic models
[2]

 are taken as primary vibration-

based symptoms. Steam turbines are designed for an operational life of a few dozen years, so their 

technical condition evolution is typically slow. Analyzed time histories cover periods up to about 

fourteen years; in some cases, last measurements were performed shortly before de-commissioning 

and an ‘accelerated wear’ condition may be expected. 

In order to demonstrate the potential of the robust approach, attention has been focused 

mainly on vibration components from the blade frequency range. As already mentioned, they are 

characterized by strong influence of control and interference. Moreover, they are not affected by 

maintenance and minor repairs that do not involve turbine casing opening; therefore, there is no 

need for symptom normalization, which may be quite tedious and problematic. Frequencies of these 

components are determined by numbers of stationary and rotating blades in individual turbine stag-

es
[2,11]

 and typically cover a range from a few hundred hertz to some 1020 kilohertz. It has to be 

kept in mind that detection of these components demands piezoelectric vibration transducers: in 

typical permanent monitoring systems they are cut off and do not influence total vibration levels, 

although in some cases are substantially higher in amplitude than low-frequency harmonic compo-

nents. 

 

3. DISPERSION MEASURES 
 

According to Energy Processor (EP) model
[3]

, information on object condition is contained in the 

power of residual processes V given in the simplest (linear and stationary) case by 
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                                                                                           ,                                                               (2) 

 

where D = /b, with b denoting time to breakdown determined by time-invariant properties of the 

object, and V0 = V( = 0). V is usually non-measurable, hence object condition assessment is based 

on symptoms, each being related to V by a symptom operator. As already mentioned, control and 

interference are characterized by random variables with time-invariant distributions. Thus, if it can 

be shown that 
 

(3) 

 

or 
 

                                                                                            ,      (4) 

 

then a measure of the dispersion of the V values depends on X and therefore contains information 

on object condition. It is easily checked that conditions given by Eqs.(3) and (4) for the power of 

residual processes will also hold for a symptom, irrespective of the symptom operator type.   

Suppose for the time being that we deal with a single symptom S  S and neglect the influ-

ence of interference. Moreover, it is assumed that D, that represents object lifetime consumption, is 

the only condition parameter accounted for; with such approach, D may be viewed as a scalar 

measure of the vector X. In order to model the influence of control parameters, their vector R is also 

replaced with a scalar measure. For an energy transforming object, control may be viewed as an op-

erator’s purposeful action aimed at obtaining desired output power; hence it is natural to accept out-

put (or input) power Nu (Ni) as the scalar measure of R. It is more convenient to speak in terms of 

the input power, keeping in mind that Nu is a monotonic function of Ni. With such assumptions, we 

finally arrive at the differential equation 
 

   

                                                 ,    (5) 

 

where ,  and  are time-invariant parameters of the object under consideration (details can be 

found in References
[5]

). Due to the accumulative nature of the EP model, some form of the Ni() 

function has to be assumed in order to obtain V/Ni in an analytical form. We may, however, as-

sume that changes of Ni are very slow, so that the dNi/d term in the numerator of Eq.(5) can be ne-

glected. This yields 
 

 

                  ,      (6) 
 

which leads to 
 

                                                                     ,     (7) 

where  
 

(8) 

 
 

and D = 1 – D is residual life. The condition given by Eq.(3) is thus fulfilled; V/Ni is a monoton-

ically increasing function with the same vertical asymptote as V() and S(). 

In general, external and internal interferences are distinguished, depending on whether the 

source is outside or inside the object. Within the framework of the EP model, only the former can 

be accounted for. As pointed out in References
[4]

, interference may affect the value of V and hence 

of S either indirectly, via the energy dissipation processes, or directly. Indirect influence may be 

treated in the manner similar to outlined above for control, as interference is basically seen as some 
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additional energy supplied to the object. The condition given by Eq.(4) is thus also fulfilled. Direct 

influence may in turn be identified with the measurement error and it seems reasonable to assume 

that, with proper data acquisition methods and equipment, it may be minimized to a point of ne-

glecting. 

Having shown that a dispersion measure determined in a manner shown schematically in 

Figure 2 can be accepted as a condition symptom, we must decide which measure should be chosen. 

The most straightforward choice is obviously standard deviation , based on the assumption of ap-

proximate normality. Preliminary results have been reported promising
[8]

; however, standard devia-

tion time histories have been found somehow irregular. Robust alternatives include median absolute 

deviation about the median m, defined by 
 

m = Med[S – Med(S)]   ,                                                (9) 
 

which in fact consists in centering the data around median rather than mean value, so that the 

above-mentioned assumption is no longer necessary
[6]

. Other possibility is offered by sample inter-

quartile range q, also known as midspread or middle fifty, given by
[12]

: 
 

q = Q3(S) – Q1(S)   ,                                                (10) 
 

where Qi is the i
th

 quartile: 
 

Q1 = F
-1

(0.25), Q2 = F
-1

(0.5), Q3 = F
-1

(0.75)   ,                      (11) 
 

F being the cumulative distribution function. Obviously, for a symmetrical distribution these 

two approaches are equivalent, but with a heavy-tailed distribution this is not the case. It may also 

be noted that for the normal distribution both m and q are constant multiples of . 

It has been noted
[8]

 that time histories of mean absolute difference between consecutive 

measurements () determined within the time window as in Figure 2 are much more regular and 

easier to interpret than those of (). In fact, for all three above dispersion measures it is tacitly as-

sumed that the change resulting from the monotonic trend within the window of the length given by 

 is negligible, so that data may be treated in a ‘purely statistical’ manner. This may be accepted 

only if D is small. It has been pointed out
[13]

 that in analyzing time series one should speak in terms 

of deviations from the trend rather than from some mean value corresponding to the entire time 

window. This explains why () yields better results. Accordingly, yet another symptom may be 

proposed in the form of 
 

 

                                                                                              ,                                                  (12) 

 

where i is the number of measurements (data points) contained in the time window, S(i) are con-

secutive symptom value readings and St() represents symptom trend estimated for the entire period 

under consideration. 

Figure 3 presents comparison of results obtained with these five dispersion measures for the 

symptom time history shown in Figure 1. In order to determine (), exponential trend has been as-

sumed. It is easily seen that all symptoms do increase with time, but () is obviously strongly in-

fluenced by outliers and hence is of ‘step-like’ form. Both m() and q() are far more regular, but 

certainly () and () are superior; in particular, the latter is most regular and almost perfectly 

monotonic. The ‘dynamics’ of these symptoms is also noteworthy: during the period covered by 

observation they increase roughly by one order of magnitude. This is an important advantage. It 

should be noted that () determined on the basis of exponential trend fit in fact cumulates two ef-

fects, namely, increasing dispersion and deviation from exponential time history, which becomes 

substantial for large values of D
[7]

. It may be inferred that their synergy is responsible for high sen-

sitivity of this symptom to D and results in monotonic and steep () time histories. Obviously this 

is not a disadvantage: sensitivity to condition parameters is in fact an important criterion in choos-
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ing most suitable diagnostic symptoms. A question, however, arises whether the above concept 

works equally well if functions resulting from more appropriate symptom operators have been used 

(exponential operator is not valid for large values of D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dispersion measures determined for symptom time history shown in Figure 1; 

(a) (), (b) m(), (c) q(), (d) (), (e) (). Data window containing 20 points. 

 

 

Figure 4 shows results obtained with Fréchet and Weibull operators. It is easily seen that for 

both the effect of increasing deviation from trend may be observed; for the Fréchet operator the sen-

sitivity to D is only slightly inferior to that achieved with the exponential fit.  
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Figure 4. Comparison of () time histories obtained for the case illustrated in Figure 1 with 

the assumptions of Fréchet (Fre) and Weibull (Wei) symptom operators. 
 

 

Similar results have been obtained for other turbines, measurement points and frequency 

bands. It is perhaps worth mentioning here that dispersion measures have also been found appropri-

ate to represent the initial section of the symptom versus time curve, characterized by negative slope 

(an analogy to the bathtub curve well known from terotechnology and related to the ‘run-in’ process 

in a broad sense). An example is shown in Figure 5; again, () and () prove superior. Handling 

such case demands certain modifications of basic EP model
[5]

. 

Obviously () and () are not robust dispersion measures and their suitability results from 

the fact that they account for the presence of a trend within the time window. It seems that a robust 

measure of deviation from this trend could be developed, which would combine the advantages of 

these two approaches. It may also be added that still other dispersion estimates have been suggested 

which might be of use in diagnostic reasoning. An estimate similar to () (in the sense that it is 

based on differences between consecutive measurements) has been proposed
[14]

. Another possibility 

of quantifying dispersion is offered by estimates based on the shortest interval that contains at least 

half of the data, somehow descriptively termed ‘the shortest half’
[15]

; they have been described as 

quite promising in terms of robustness. 
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Figure 5. 230 MW unit, rear high-pressure turbine bearing, vertical direction, 5000 Hz band. 

(a) symptom time history, (b) (), (c) m(), (d) q(), (e) (), (f) ().  

Data window containing 20 points. 
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4. MEASURES OF CORRELATION 
 

Following Karl Pearson, a measure of correlation may be referred to as ‘a computational index used 

to measure bivariate association’
[16]

.The most commonly used quantitative measure of correlation 

between random variables S1 and S2 is Pearson product-moment correlation coefficient r given by 

the normalized covariance
 

  

,    (13) 

 
 

where E denotes expected value and 
 

1 = E(S1), 2 = E(S2) .                                                    (14) 
 

The main deficiency of this coefficient is that it assumes a linear relation between S1 and S2. 

The second disadvantage results from the fact that r is based on estimated standard deviation and is 

thus sensitive to outliers. Both these drawbacks may be eliminated or at least alleviated to some ex-

tent by using non-linear and more robust measures of correlation. These include the Kendall rank 

correlation coefficient , given by
[17]

 

 

                                                                                            ,                                                        (15) 

 

and Spearman rank correlation coefficient , given by
(18) 

 

                                                                                                 .                                                       (16) 

 

In both formulae, N is the number of scores (elements) in two data samples, d denotes 

symmetric difference distance and di refers to differences between individual ranks. It should be 

noted here that both  and  are calculated on the basis of ranks rather than standard deviations and 

therefore more suitable for analyzing time series. 

Application of correlation measures in condition monitoring is twofold. First, the very exist-

ence of correlation is useful in diagnosing certain malfunction types, i.e. in qualitative diagnostics. 

Second, it has been suggested that evolution of correlation measures with time may be employed in 

lifetime consumption assessment, i.e. for the quantitative diagnosis. 

 

4.1. Qualitative diagnosis 
 

One of the symptom types listed in References
[2]

 is termed correlation of vibration amplitudes with 

operational parameters. Although not stated explicitly, this is in fact based on a ‘binary’ approach: 

correlation is either present or not or, to put it less categorically, is ‘strong’ or ‘weak’. Such concept 

tacitly implies that strong correlation is viewed indicative of deterministic dependence. Correlation 

with load or temperature is employed in detecting faults like rotor crack
[19]

 or rub
[20]

. In what fol-

lows, however, attention will be focused on correlation between two vibration-based symptoms. 

In general, any symptom will depend on a number of condition parameters, so that we can-

not speak in terms of deterministic functional relations of the Si = f(Xj) type. We may, however, ex-

pect a stochastic relation, which means that changes of Xj will affect probability distribution of Si. 

Moreover, it seems justified to assume that if 
 

Si = F(X1, X2, ..., Xj. ..., XN)                                             (17) 
 

and Xj changes substantially, then with various values of Xk, k  j, the value of Si will  fluctuate 

about some expected value E(Si) = f(Xj). This means a statistic or correlative relation. Thus, if two 

symptoms can be shown to be correlated, we may infer that they are dependent, i.e. that their 

changes have been caused by the same condition parameter.  
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Application of correlation measures to fault identification has been dealt with in an earlier 

study by the author
[21]

 and here we shall aim at determining whether robust approach brings about 

any improvement. The first example is for a somehow untypical case of the 4f0 component in-

crease as a result of turbine fluid-flow system failure. Table 1 lists Pearson, Kendall and Spearman 

coefficients of correlation between this component and those from the lower part of the blade fre-

quency range, for three different turbines of the same type. Two cycles for the (faulty) unit T9 refer 

to periods before and after repair, respectively. It is easily seen that with the fault present correlation 

is strong and positive, while in all other cases it is much weaker and some coefficient values are 

negative. Qualitative conclusions do not depend on which correlation measure has be applied. 

The second example refers to intermediate-pressure permanent rotor bow in two turbines. In 

general, rotor bow produces unbalance, and suitable procedures must employed in order to 

distinguish from other malfunctions that give similar changes of vibration patterns. It has been 

shown
[21]

 that permanent bow results in an increased 1f0 component in axial direction, so strong 

correlation with this component in vertical direction should be expected. Table 2 lists coefficients 

determined for five similar turbines of the same general layout; in the case of the faulty units (T1 

and T2) consecutive cycles have been determined by rotor balancing, which reduces vertical vibra-

tion to an acceptable level, but obviously does not eliminate the root cause (1f0 component time 

history for one of the faulty units is shown in Figure 6). Conclusions concerning suitability of vari-

ous correlation measures are the same as for the previous case: it is evident that robust measures 

offer no significant advantage. Similar results have been arrived at in other studies by the author
[22]

. 

 

 

Table 1. Correlation coefficients for units T8, T9 and T10: rear intermediate-pressure turbine 

bearing, axial direction. 
 

Unit 

and cycle 

Coefficient 

type 
Coefficient of correlation of the 4f0 component 

with vibration amplitudes in the bands [Hz] 

800 1000 1250 1600 2000 

Unit T8 

all 

r 0.110 0.110 0.097 0.198 -0.013 

 0.058 0.091 0.086 0.167 0.036 

 0.091 0.136 0.114 0.245 0.066 

Unit T9 

cycle 1 

r 0.912 0.931 0.833 0.794 0.689 

 0.511 0.538 0.318 0.439 0.336 

 0.674 0.702 0.449 0.599 0.470 

Unit T9 

cycle 2 

r -0.009 -0.461 -0.078 -0.060 -0.100 

 -0.037 -0.302 -0.032 0.041 -0.006 

 -0.029 -0.412 -0.040 0.077 -0.030 

Unit T10 

all 

r 0.103 0.127 0.071 -0.211 -0.206 

 0.227 0.104 0.123 -0.257 -0.080 

 0.359 0.161 0.178 -0.390 -0.128 
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Table 2. Coefficients of correlation between 1f0 components for five turbines.  
 

Unit 

and cycle 

Coefficient 

type 
Coefficient of correlation of the 1f0 component, 

bearing 3 vertical, with 1f0 at 

bearing 2 axial bearing 3 axial bearing 4 axial 

Unit T1 

cycle 1 

r 0.690 0.904 0.911 

 0.350 0.783 0.793 

 0.524 0.910 0.924 

Unit T1 

cycle 2 

r 0.937 0.966 0.895 

 0.835 0.839 0.741 

 0.960 0.957 0.868 

Unit T2 

cycle 1 

r 0.967 0.971 0.952 

 0.801 0.862 0.846 

 0.947 0.961 0.950 

Unit T2 

cycle 2 

r 0.651 0.595 0.506 

 0.538 0.407 0.363 

 0.688 0.569 0.508 

Unit T2 

cycle 3 

r 0.949 0.860 0.849 

 0.835 0.607 0.630 

 0.952 0.774 0.797 

Unit T3 

all 

r 0.569 0.405 0.308 

 0.087 0.315 0.233 

 0.137 0.423 0.320 

Unit P3 

all 

r 0.269 -0.163 -0.490 

 0.093 -0.168 -0.366 

 0.152 -0.237 -0.547 

Unit P5 

all 

r 0.283 0.309 -0.082 

 0.183 0.232 -0.127 

 0.319 0.333 -0.174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Vibration time history: rear intermediate-pressure turbine bearing, 

vertical direction, 1f0 component; permanent rotor bow.  

Stepwise decreases have been caused by rotor balancing. 
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4.2. Quantitative diagnosis 
 

The EP model assumes deterministic influence of D on symptom values, so for any i Si(D) is a 

monotonically increasing function. In view of Eqs.(2) and (7), as D approaches unity, both Si and 

dSi/dD tend to infinity, so equal increments of D will result in increasing increments of Si: 
 

D  1  Si = Si(D + D) – Si(D)     (D = const.)  ,               (18) 
 

and this will hold for all symptoms. Correlation between any two symptoms Sj and Sk is thus ex-

pected to increase, as both will, to a growing extent, be dominated by D rather than other factors 

and thus become more deterministic with respect to D. This phenomenon has been termed the ‘Old 

Man Syndrome’
(10)

. If D is taken as the sole condition parameter and c is a correlation measure       

(-1  c  1), we may infer that 
 

D  0  c  0,                                                          (19) 

 

D  1  c  1                                                           (20) 
 

(it is assumed that for every i, Si is a monotonically increasing function of D, so that c should tend 

to its positive limit). This means that, from the formal point of view, a measure of correlation is 

conformant with a diagnostic symptom definition and hence can be applied as such. Application of 

such measure in quantitative diagnostics at the present stage is expected to provide a warning when 

generalized damage becomes high enough to justify some action, like e.g. rescheduling overhauls or 

planning purchase of spares.  

As pointed out in References
[10]

, suitability of the ‘Old Man Syndrome’ concept in quantita-

tive diagnostics should be first tested on vibration-based symptoms pertaining to the fluid-flow sys-

tem condition. A period between two consecutive major overhauls can be then considered a single 

life cycle; for steam turbines this means that, in practice, data covering a dozen or so years may be 

available. The problem of selecting symptoms with the highest information contents may be solved 

with the aid of Singular Value Decomposition (SVD) method
[10,23]

.  

It has already been mentioned that in analyzing time histories a ‘mean value’ becomes 

somehow ‘abstract’, especially if the time window is long or D is close to 1. This has led to a sug-

gestion of applying a correlation measure similar to Pearson coefficient (see Eq.(13)), but deter-

mined by differences from trends rather than means
[10]

. Such measure has been tentatively termed 

‘modified Pearson coefficient’ r. Using the notation from Eq.(12), r is given by 

 

                                     (21) 

 
 

Formally speaking, r is not a robust measure, as it is also sensitive to outliers; it seems, 

however, interesting to include it for comparison. 

The first example refers to an unit already dealt with (Figures 1, 3 and 4), but different fre-

quency bands (front high-pressure turbine bearing, vertical direction, 5000 Hz and 6300 Hz bands). 

Figure 7 shows time histories of all four correlation measures introduced earlier in this Section (r, 

r,  and ), for time window containing 25 consecutive data points. It is easily seen that both r () 

and r() are characterized by comparatively high initial values that promptly decrease to about 

0.35. Influence of some interference that had acted on both symptoms in a similar manner may be 

suspected. Terminal increasing section is rather short and stepped – obviously outliers are responsi-

ble. Introduction of r brings about only small improvement. On the contrary, both () and () are 

much more regular and initial high values are absent. Moreover, there is a slight decrease starting at 

about 2500 days, which can be hardly noticed for r and r; it has been revealed that this was caused 

by a repair which de-correlated the symptoms to a certain extent. Final increasing section starts at 

about 3000 days, which means that an alert is provided with a lead of about two years: a very satis-
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factory result indeed, as there should be enough time for a remedial action. On the basis of these 

results it is clear that the robust approach is superior; both robust coefficients lead to similar conclu-

sions and none can be pointed out as better than the other. Higher values of the Spearman co-

efficient are typical
[6]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Coefficients of correlation plotted against time: 200 MW unit, front high-pressure 

turbine bearing, vertical direction, 5000 Hz and 6300 Hz bands.  

(a) r(); (b) r(); (c) (); (d) (). 

 

It has been pointed out that the ‘Old Man Syndrome’ can be observed only for old units that 

are approaching service life end. In fact, in the above example high-pressure turbine rotor was re-

placed shortly after the last measurement. Figure 8 shows time histories for two symptoms recorded 

at the rear high-pressure turbine bearing of a 230 MW unit, first measurement having been per-

formed shortly after commissioning. In both cases there is a very weak decreasing tendency with 

significant outliers. Time histories of correlation coefficients are shown in Figure 9. It is immediate-

ly seen that Pearson and modified Pearson coefficients plots (Figure 9a and b) are very similar, even 

quantitatively; this is hardly surprising, as trends are in both cases very weak. r() and r() time 

histories are quite irregular and obviously heavily influenced by outliers. By contrast, Kendall and 

Spearman coefficient plots (Figure 9c and d) are much ‘smoother’ and both reveal initial increasing 

section followed by a sharp drop and then the same sequence again; maximum values are, however, 

significantly lower than those shown in Figure 7. Just as in previous example, both drops are due to 

overhauls that de-correlate the symptoms to a substantial degree. Due to the influence of outliers, 

this effect is hardly noticeable in the r() and r() plots. Thus, again, robust approach yields results 

that are much easier to interpret. 
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Figure 8. Vibration time histories: 230 MW unit, rear high-pressure turbine bearing, axial 

direction, 3150 Hz (a) and 5000 Hz (b) bands. Broken lines represent exponential fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Coefficients of correlation plotted against time for time histories shown in Figure 8.  

(a) r(); (b) r(); (c) (); (d) () 

 

Finally, it may be mentioned that other approaches to quantifying correlation have also been 

proposed, including Rènyi maximal correlation
[24]

 and an interesting concept of Pearson correlation 

derivatives
[25]

. Their suitability for diagnostic applications and possible advantages still remain to 

be studied. More recently reported measures employing Brownian or distance correlation
[26]

, will 

possibly open a promising field for further research. 
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5. CONCLUSIONS 
 

To quote John W. Tukey, ‘it is perfectly proper to use both classical and robust/resistant methods 

routinely, and only worry when they are different enough to matter’
[27]

. It seems reasonable to state 

that, when dealing with correlation for the purpose of a qualitative diagnosis, i.e. determining 

whether it is strong or weak, these differences are negligible and conclusions drawn with both clas-

sical and robust measures are similar. If, however, dispersion or especially correlation is analyzed 

as a function of time for the purpose of a quantitative diagnosis and prognosis, robust approach 

yields significantly better results. Clearly, it is better suited to analyze time histories characterized 

by strong influences of control and interference. Of particular importance for possible applications, 

robust approach is capable of providing an ‘early warning’ with considerable lead; this demon-

strates that meta-symptoms based on robust measures are highly sensitive to technical condition de-

terioration. 
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