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Abstract  
 

Under consideration are technologies for synthesis and identification of trained hidden Markov models based 

on a novel statistical technique and applied in condition monitoring. The approach can be used for both con-

tinuous- and discrete-time models of technical and non-technical systems. An initial rough model results 

from statistical multivariate analysis of observed data or their analysis by means of Kohonen self-organizing 

feature maps. Then it suffers proper corrections. Histograms of observed frequencies of being in different 

system states after the given exploitation periods are employed to train the constructed models. Free network 

parameters are identified by the chi-square minimum method. The synthesis may be carried out in case of 

some uncertainties: absence of complete information on system states and their connections is assumed. Un-

defined observed cases are partially identified by the classification propagation method with the aid of either 

self-organizing feature maps or cluster analysis. Connections between different system states are determined 

according to contiguity of their clusters or areas of winning units on the topological maps and statistical 

goodness-of-fit tests. In case of models represented by discrete-time structures (Markov chains) conversion 

to continuous-time trained structures (Markov networks) is performed to obtain more reliable results with the 

following return to discrete time and identification of transition probabilities. The methods presented are 

available for specialists responsible for maintenance of technical products. Obtained Markov models are use-

ful for diagnostics, pattern recognition, structure service lives forecasting and establishing the justified rou-

tine maintenance. An example of synthesis and identification of Markov models representing fatigue failures 

of an aircraft air-intake panel is given for illustration. 

 

__________________ 
 

Keywords: Markov networks, Markov chains, hidden Markov models, model synthesis, model 

identification, condition monitoring 

 

1. INTRODUCTION  
 

Jet engine noise, pressure fluctuations in turbulent boundary layer and other high-level acoustic 

loads result in fatigue failures of aircraft structures. These problems have been attracting attention 

of researchers since the 1950s after numerous acoustic fatigue failures of aircraft resulted from air-

speed increase and changed engine types. In recent years, the interest to this problem has greatly 

                                                 
1
 This work was presented at the International Conference on Condition Monitoring and Machinery Failure 

Prevention Technologies in 2010. Published with permission of the British Institute of Non-Destructive Test-

ing.   
© The British Institute of Non-Destructive Testing, 2010. 
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increased owing to a new generation of supersonic airplanes and hypersonic flight vehicles devel-

oped. 

Acoustic loads are the most dangerous for thin-walled aircraft structures. These loads are 

wide-band (up to 5000 Hz) random process, with level varying from 145 dB to 170 dB in different 

points of aircraft surface.  

In practice, destructiveness of these structures can be estimated by the changes of distributed 

structure stiffness, which is, in its turn, recognized by the qualitative changes of normalized spectral 

structure characteristics measured in checkpoints. Normalizing makes it possible to analyze only 

qualitative response and not to take into account the level of load. Such an approach based on the 

estimation of averaged structure properties seems more promising than the direct search for separate 

cracks
[6,18]

, which are not always accessible for direct observation and hard to forecast because of 

considerable dispersion in their evolution. The use of secondary characteristics (such as spectra) 

instead of time-domain realizations as check data is caused by the following facts:  

− Spectra keep a sufficient amount of useful information about processes under study 

− Spectra need less memory in digital representation 

− Spectra may be easily and quickly computed with controlled accuracy. 

Structure diagnostics and service life forecasting are two important technical problems to be 

solved during condition monitoring of aircraft structures suffered fatigue failures. Their solution is 

necessary for both planning maintenance works and estimating destruction level. The results ob-

tained give the opportunity to cut down expenses for aircraft maintenance, raise the reliability of 

destruction monitoring, simplify the routine maintenance and derive its more justified schedules. 

Technology for monitoring of fatigue failures based on capabilities of neural
2
 and discriminant net-

works was considered in papers and books
[1,9-12,15]

.  

As it was shown in the book
[5]

, probabilistic models of cumulative damage are more prefera-

ble for forecasting in the discussed area than the deterministic ones. A relevant approach founded 

on Markov process theory was presented in works
[1,9-10,12,14-15]

.  

According to this approach, forecasting is based on accumulated observations. Probability 

dynamics is described by continuous time, discrete state Markov processes. The given damage 

types are considered as separate discrete states in which the analyzed system has some probability 

to find itself. In due course transitions between the states are the case. It is assumed that state-to-

state transitions (corresponding to each branch of the graph) meet the properties of Poisson flows of 

events. Time-domain dynamics of state probabilities is described by Kolmogorov set of ordinary 

differential equations.  

Transition flow rates are free model parameters. Comparison of observed and expected his-

tograms which present observed damage distributions at given time points, is used to identify them. 

The technique to find independent parameters as those minimizing a certain goodness-of-fit meas-

ure is used. According to the given approach, this measure is minimized at the specified time points, 

in which observed data are available. The employed procedure of parameter estimation as well as its 

software implementation were described in books
[1,15]

. In fact, an inverse problem is solved, viz.: 

coefficients of differential equations are determined by using the given solution characteristics. Ob-

tained values of free parameters are considered as fatigue failure characteristics which have become 

apparent during observations.  

It was shown that Markov models under the given inverse problem formulation may be re-

garded as specialized neural networks. The technique for their synthesis to select the most suitable 

network structure was developed on the base of statistical criteria
[1,13,15]

. Proposed in papers
[12,14]

 

was further development of this approach, the concept of multifactor Markov networks to represent 

subtle features of cumulative damage development and improve concordance between observed and 

predicted behavior. The papers mentioned present new features of these trained structures, including 

their 3-D applications, and show advantages of probabilistic predictions obtained with the aid of 

Markov networks to improve the damage diagnostics quality. Markov models in question make it 

                                                 
2
 Traditional neural networks with supervised learning (perceptrons, etc.) as well as Kohonen self-organizing 

feature maps were in use. 
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possible both to forecast probabilities of damage types and identify them on the base of observed 

system characteristics. Thereby they fix up typical condition monitoring problems solution for the 

structures under study. 

Taking into account indirect observations for the system states, Markov networks under the 

given problem formulation can be considered as a special case of continuous-time hidden Markov 

models, which use measured spectral characteristics in checkpoints as observed parameters and are 

obviously regarded as more difficult instruments for practical applications than the traditional dis-

crete time ones. 

As for the structure service life forecasting in case of an identified Markov network, damage 

state probabilities as functions of time are obtained by means of integrating Kolmogorov set of dif-

ferential equations. This operation is not difficult and is beyond the application field of hidden Mar-

kov models.  

In its turn, diagnostics of the technical systems under consideration, which suffer damages of 

different types, is carried out in case of uncertainties when neither possible defect types nor connec-

tions between them are known beforehand. There is no information about the damage framework of 

such systems since:  

− Some defects may not be identified easily and quickly (particularly, when it is difficult to 

get access to a structure part or find cracks because of their small size) 

− Defects are usually not monitored directly and may be revealed by implication only via 

the system characteristics which are available for measurements (for example, spectra in 

checkpoints) 

− Strict reasons for damage discrimination are frequently absent 

− Experimental estimation of mutual connections between different defect types is a labor-

intensive and long process, as a rule. 

Two principal problems are usually to be solved to support structure diagnostics of the given 

ambiguous systems represented by the aforementioned probabilistic models: 

− Given the parameters of Markov model in use and a particular sequence of observed 

spectral characteristics in structure checkpoints, find the sequence of different damages 

represented by model states, which is most likely occurred (identification problem) 

− Given observed spectral characteristic sequences, find the most probable Markov model 

for representation of damage framework including the set of states, the structure of tran-

sitions between them and quantitative parameters of these transitions (synthesis prob-

lem).  

Thus, the problem of constructing hidden Markov models best conformed with observations 

in case of uncertainties has been arisen. Presented in this paper are technologies for synthesis and 

identification of Markov models based on a novel statistical identification technique which can be 

applied for both continuous- and discrete-time models.  

The given approach is intended for solution of both problems specified before. When solving 

the synthesis problem it determines a set of relevant states, their connections and optimal values of 

free model parameters for Markov networks. Some features of this technique were described in pa-

pers
[12-13]

 and books
[1, 15]

. If discrete-time structures (Markov chains) fit an application problem bet-

ter (for example, in case of discrete-time output of observed spectral characteristics with certain 

sampling interval), conversion from an initial continuous-time structure to the corresponding dis-

crete-time one is carried out with the aid of a suggested special procedure. 

Owing to universality and flexibility, the presented way of solution has obvious advantages 

over the methods used for maximum likelihood estimation of parameters for traditional hidden 

Markov models represented by Markov chains given a dataset of observed output is available. Until 

recently, no tractable algorithm has been known to solve such a problem, but for the Markov chains 

a local maximum likelihood can be efficiently derived by using Baum-Welch or Baldi-Chauvin al-

gorithms
[2,19]

. It should be noted that the presented way of solution calculates not only optimal val-

ues of free model parameters like Baum-Welch and other algorithms but, in addition to this, a set of 

relevant states and their connections. It is significant that traditional algorithms for hidden Markov 
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models are unable to solve the applied technical problem considered here when uncertainties with 

damage types, model states and their connections are the case or the number of sampling points is 

too small. 

Solution of the identification problem requires to find the most probable damage sequence 

over all the possible ones, with the probabilities of certain observed spectra belonging to given 

states in use. In case of Markov chains, the solution of interest can be found by Viterbi algorithm
[20]

 

but, taking into account a relatively low number of model states in many application problems, ex-

haustive search algorithms are also acceptable for solution in case of both continuous-time and dis-

crete-time models.  

In spite of the technology in question is considered here in application to a particular tech-

nical problem, the presented mathematical tools are not fastened to the given field of use and can be 

exploited for solution of many other technical and non-technical tasks. In particular, the conversion 

of discrete-time models to continuous-time models with their following identification and return to 

the initial structure is highly promising allowing for greater capabilities for model synthesis in con-

tinuous-time domain.  

 

2. SOLUTION TECHNOLOGY 
 

2.1. Synthesis problem 
 

The synthesis problem solution includes the following stages:  

1) Reduction of input data dimension to remove the redundant information   

2) Determination of a set of states for Markov network via either Kohonen classification with 

the aid of Kohonen self-organizing feature maps (Kohonen maps) or multivariate clusteriza-

tion procedure  

3) Determination of initial distribution of connections between the states according to either 

contiguity of activated parts of Kohonen maps or multidimensional scaling   

4) Adjustment of connections (removing redundant and statistically insignificant connections) 

by means of successive identification of transition flow rates by the chi-square minimum 

method 

5) Final identification of network parameters by the chi-square minimum method. 

 

2.1.1. Input data 
As is shown in paper

[9]
, it is convenient to estimate the level of fatigue failure for the structures suf-

fered damages via response power spectral densities measured in checkpoints. These spectra are 

further considered as initial analyzed data. It is assumed that some representative sample of spectra 

resulted from either structure tests or observations during operation is available, with a damage type 

being specified for only certain of the spectra. Power spectral densities are regarded to be calculated 

with the accuracy sufficient for qualitative recognition
3
.   

 

2.1.2. Reduction of input data dimension: Synthesis stage 1 
In case of observed data represented by spectral characteristics measured in structure checkpoints it 

is expedient to bring analyzed variables to conformity with frequency ranges taken with a certain 

step. Values of these variables are averaged normalized spectral characteristics for the correspond-

ing frequency ranges. A large number of input variables, which is typical for this representation, 

may complicate the input sample analysis: in particular, the number of observed data necessary for 

qualitative network synthesis may become too great. Solution of this problem by worsening the 

spectral resolution capability is unacceptable as the useful information is lost. It is possible to im-

prove the analysis quality only if the input data dimension is eliminated at the expense of redundant 

or insignificant information.   

                                                 
3
 For example, accuracy of digital spectral analysis is discussed in books

[3,17]
. 
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The ways of this problem solution are considered in paper
[9]

 and books
[1,15]

. The method of 

principal components
[16]

 is the most suitable among the permissible variants since it is the simplest 

and does not require any special assumptions on the initial data. The given approach makes the re-

sults of analysis independent of the spectrum evaluation features. 

 

2.1.3. Determination of a set of states for Markov network: Synthesis stage 2 
A set of Markov network states is determined by classifying the damage types: its own state corre-

sponds to each type. As the damages for input cases are assumed to be partially known, it is neces-

sary to propagate the given classification to the spectra which have no assigned damages to. Two 

alternative instruments can be used to determine the model states: Kohonen maps or multivariate 

clusterization. 

The classification propagation method based on Kohonen maps contains the following steps:  

1) Select Kohonen map
[8]

, where the number of elements exceeds considerably the ex-

pected number of damage types.  

2) Train the network by using input cases for which damages are known. Mark the neu-

rons of the topological map, which won for one damage type only. (Labels correspond 

to damage types.) 

3) Input the remaining part of the sample to the network. Attribute the damage labels to 

the input cases, for which the marked neurons win.   

4) If a subset of input cases, for which damages are known, is extended, then go to Step 

2 else stop the computation.  

If the sample of input cases still contains elements with unknown damages, the following ac-

tions are possible: 

− Provide the network with a special state Unknown for unknown damages and attrib-

ute unclassified elements to this type (see Section 3); 

− Undertake the structure inspection and classify the remaining elements of the sample 

(if their number is not too great). 

It is expedient to carry out clusterization in four steps: 

1) Tree clustering to get hierarchical tree plot and estimate reasonable number of clusters 

which are used later to form the model states
4
 (in case of input data discussed before, 

the Ward’s method with Euclidean distances is recommended) 

2) K-means clustering for the number of clusters determined at the previous step to find 

out the content of each cluster 

3) Assigning proper labels to clusters which contain the predominant number of marked 

elements of a given damage type 

4) Meshing clusters with identical labels to higher-level clusters corresponding to a given 

damage type (optional).  

 

2.1.4. Determination of connections between the states of Markov network: Synthe-

sis stage 3 
To determine initial distribution of connections between Markov network states, information on 

contiguity of activated parts of Kohonen maps or analysis of multidimensional scaling results can 

be used.  

In the first case the associative properties of Kohonen maps are used, viz.: similar cases acti-

vate the groups of closely set neurons. Connections between the states are predicted according to 

contiguity of activated areas of the marked topological map. Each of these areas corresponds to a 

fixed damage type (Figure 4). 

                                                 
4
 It is recommended to determine this number of clusters as the number of hierarchical tree branch intersec-

tions by the cross-section through one of the longest alienation distance intervals in this tree. Selection of this 

interval is conditioned by availability of certain label dominance in each cluster. 
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The formal rule to find out contiguity of the areas is not unique. One of the convenient ways 

is to count minimal distances between pairs of marked neurons in Manhattan metric. Used for com-

parison are minimal distances between two differently marked neurons: 
 

 βαβα
L(β(L(α(

jjiiminM 


, 

 

where L() and L() are labels of neurons with the  and  indices; indices  and  take all the 

values meeting the indicated condition; i and i  are numbers of rows, in which the neurons with 

indices  and  are disposed at the topological map; j and j are corresponding numbers of col-

umns. Those and only those pairs of states p and q are supposed to be adjacent, for which the fol-

lowing condition is the case:  
 

  k,Mjjiimin βαβα

qL(β(
pL(α(






 

 

where indices  and  take on all the values that meet the indicated conditions; k0 is the integer-

valued parameter (in standard conditions k may be equal to zero). 

Multidimensional scaling is applied to a matrix of Euclidean distances between the centers 

of clusters which correspond to different damage types and were determined at the previous step. 

As a result, these centers are usually inserted into two- or three-dimensional space. Possibility of 

transitions between the model states is derived from the values of distances between them. Thereby, 

the hypothesis of transition possibility dependence on distance in the obtained space is used.  

When forming an initial Markov model structure, each state is connected with the states 

which centers are at the minimal distance from its center or at the distances exceeding the minimal 

one less than the given percent (in practice the 50%-limit may be recommended). The cluster center 

corresponding to the normal system operation is represented by the initial state. Directions of transi-

tions along state connections are determined according to proximity to the initial state, viz.: transi-

tion from one state to another is possible if they are connected and the minimal number of transi-

tions from the initial state to the first one is less than the analogous/similar number of transitions to 

the second one. If direction is ambiguous, both variants of transitions are attributed to the corre-

sponding connection.  

The structure obtained as a result of any given procedure takes into account redundant and 

statistically insignificant connections, which are revealed and removed at the next stage of calcula-

tions.  

 

2.1.5. Adjustment of connections: Synthesis stage 4 
In training the network, its free parameters are selected to get the best correspondence between ob-

served and expected histograms of being in the system states at the given time points. Pearson sta-

tistic 
 




n

k k

2

kk

Np

N)p(F

0

 

 

is used as a goodness-of-fit measure, where Fk is observed frequency of getting into the k-th system 

state at a given time point, pkN is corresponding expected frequency, pk is expected probability of 

being in the k-th state, N is the sample size, n is the number of model states. The smaller the value 

of this statistic the better the correspondence between observed and expected results. Under some 

conditions
[7]

, it is distributed asymptotically according to a chi-square distribution. Expected state 

probabilities are obtained by means of numerical integrating Kolmogorov set of differential equa-

tions. 

The given technique of identifying free parameters is called the chi-square minimum meth-

od. For the problems under consideration, it yields estimations which are close to the ones obtained 
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by the maximum likelihood method
[7]

. It was proved that, under some general conditions, Pearson 

statistic values derived by substituting the indicated solutions were described asymptotically by the 

chi-square distribution with n-s-1 degrees of freedom, where s is the number of free parameters to 

be determined, with the calculated values of free parameters converging in probability to the desired 

solution when increasing the sample size
[7]

. These facts allow to use the given statistic for testing 

the hypothesis of agreement between observation data and Markov network forecast.  

The procedure for finding optimal values of free parameters, which is based on electronic 

spreadsheet capabilities, is considered in works
[1,9,15]

. It was also shown there how to optimize the 

model, using statistical goodness-of-fit tests.  

Adjustment of connections in Markov networks (viz.: removing indirect and statistically in-

significant connections) is carried out on the basis of the same approach. A network, in which all 

the transition flow rates are free parameters, will be called the complete network.  Networks, in 

which some conditions are imposed on free parameters (for example, the conditions of equality to 

zero), will be called the reduced networks. The hypothesis of agreement between obtained observa-

tion data and a complete Markov network forecast will be denoted as Hc.  

If there are no reasons to reject hypothesis Hc, each network connection tests of the signifi-

cance are carried out in turn. For this purpose, free parameters are evaluated by the chi-square min-

imum method under the condition of flow rate equality, which corresponds to the connection tested, 

to zero. Obtained value Xr
2
 of Pearson statistic is compared with the analogous characteristic Xc

2
 for 

the complete network. Since difference Xr
2
Xc

2
 is asymptotically distributed as a chi-square with 1 

degree of freedom
[4]

, this statistic is used for testing null hypothesis Hr of the agreement between 

the observation data and the reduced network forecast against the alternative hypothesis Hc. If hy-

pothesis Hr is not rejected at the given significance level, the corresponding connection is marked 

as a candidate for withdrawal from the network.   

It is expedient to refine the network by iterations, using a sufficiently great value for the sig-

nificance level, at which a connection is removed (p=0.5 is recommended), and a small value for 

the significance level at which a connection remains in the network (p=0.01 is recommended). The 

result obtained after removing connections at the current stage of calculations is considered as a 

complete network at the following iteration. Under such conditions, only a fortiori redundant con-

nections are withdrawn from the network after each iteration (p>0.5). Solution with regard to ques-

tionable connections (0.01p0.5) is postponed. As a rule, significance of questionable connections 

is clarified step-by-step. This fact is caused by simplified network under study.  

 

2.1.6. Final identification of network parameters: Synthesis stage 5 
At this stage, free parameters of the obtained network are identified by using the chi-square mini-

mum method. The goodness-of-fit for observed data and forecast is estimated by the minimal value 

of Pearson statistic. Number of degrees of freedom for the chi-square goodness-of-fit test is deter-

mined as a difference between the number of independent observed statistics Fk and the number of 

parameters to be found.  

 

2.2. Identification problem 
 

The number of sampling instants q, at which spectral characteristics in structure checkpoints are 

estimated, should be selected beforehand for the identification problem solution. The identification 

procedure includes the following steps: 

1) Determination of all the model state sequences Si={si1, …, siq}, i=1,…,r, which are possible 

for developing a system under study during a given number of sampling instants 

2) Estimation of occurrence probabilities P(Si) for every sequence Si, i=1,…,r indicated at the 

previous step via the product of probabilities of transitions between the model states during in-

tervals limited by the given sampling instants in the following way: 





1

1

1,,,)(
q

u

uuisi pSP , where 
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ps,i,u,u+1 is probability of transition from state siu occupied at instant u to state si,u+1 occupied at 

instant u+1. These transition probabilities can be calculated by using either Markov chains or 

Markov networks
5
 

3) Estimation of occurrence probabilities Piz of observed sequence Z={z1, …, zq} of spectral 

characteristics in structure checkpoints for state sequences Si, i=1,…,r, in the following way: 





q

j

jz,i,iiz p)P(SP
1

, where pz,i,j is probability of acquisition of observed characteristic zj be-

ing at state sij
6
. 

4) Selection of the most probable state sequence  
1,...,riimax SS


 corresponding to the maxi-

mal probability  
1,...,riiz

i
z,max PmaxP


 . 

When sampling estimations of distribution parameters for the distances of observed data cor-

responding to each model state from state centroids
7
 of these data are available, it is expedient to 

replace quantities pz,i,j by probability density functions fi,j(xj) of Euclidean distances xj of character-

istics zj from the observed data centroids for corresponding states sij
8
. It is the distance parameter 

that determines estimations of occurrence probabilities for observed characteristics in this case. 

It is necessary to note that Markov chains are more convenient for identification than Mar-

kov networks since they ensure simpler calculations. In its turn, Markov networks are more conven-

ient for synthesis of hidden models owing to their greater flexibility and capabilities of problem so-

lution when only a few observation instants are available and model states are unknown a priori.  

 

2.3. Conversions from continuous-time models to discrete-time models 
 

Conversions from a continuous-time model to the corresponding discrete-time one and vice versa 

are carried out if this is expedient for the application problem solution. Conversion to a continuous-

time model is in fact determined by a proper mapping of a sequence of Markov chain discrete steps 

onto Markov network continuous-time scale. In case of inverse conversion, the following procedure 

is suggested: 

1) Selection of a sampling interval τ on the continuous-time scale, which corresponds to the 

discrete step of Markov chain 

2) Integration of Kolmogorov set of differential equations describing the state probability dy-

namics in an initial Markov network to calculate, as a result, the sequence of probability 

distribution vectors Pi (i=0,1,…,l) corresponding to a given sequence of l+1 discrete time 

points taken with the selected sampling interval τ 

3) Construction of transition probability matrix A=||aij|| of order nn, where n is the number of 

states of Markov chain under consideration which represent this chain dynamics with the 

aid of free variables denoting transition probabilities and, if necessary, analytical expres-

sions assembled from these variables 

4) Numerical solution of multivariate optimization problem with the following conditions to 

estimate required values of free variables which matrix A are composed of: 

                                                 
5
 In case of Markov chains such a probability equals to the probability of transition between the indicated 

states. In case of Markov networks it is determined by integrating Kolmogorov set of differential equations, 

with the previous state at the previous instant having unity probability and the other ones − zero probabili-

ties. 
6
 It is expedient to calculate distances xj for representation of input data with reduced dimension (see Step 1 

of the synthesis problem solution) to avoid influence of redundant information. 
7
 These distributions are assumed to be normal according to the central limit theorem of the probability theo-

ry and the structure of Euclidean distances. 
8
 In case of normal distance distribution, positive arguments are used for calculating the mentioned probabil-

ity density functions. 
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Figure 1. Patterns of normalized stress spectra for the recognized structure states at 

checkpoints X and Y. 
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Obtained values of the specified free variables yield the sought transition probability matrix A that 

determines state changes of Markov chain in question: ii APP 1 , i=0,1,…,l. Statistical signifi-

cance of relevant residual error can be evaluated by means of obviously modified Pearson statistic 

(see Section 2.1.5).  

 

3. APPLICATION EXAMPLE 
 

The proposed technique features are shown by the example of synthesis and identification of Mar-

kov models representing fatigue failures of an aircraft air-intake panel. Its characteristics and dam-

age types are presented in works
[1,10]

.  

Observation data were represented by a sample of 144 pairs of stress power spectral densities 

measured at two checkpoints in the range from 500 to 2500 Hz. Some patterns of these characteris-

tics are given in Figure 1. Damage types were supposed to be known beforehand for 25 spectral 

pairs only. Spectra for the test sample of air-intakes were estimated after 1000 and 2000 exploita-

tion hours. Six damage types were identified. Each observed case contained average values of nor-

malized spectral densities in 45 frequency ranges of 45-Hz width. Thus, the initial set of data to be 

analyzed included 90 input variables.  

After reducing the problem dimension by the principal component method, the number of 

input data was diminished up to 10 variables, which were used in the following analysis (10 first 

principal components explained more than 80% of observed variance).   

The method of classification propagation made it possible to expand the identified part of the 

sample up to 115 elements by two iterations. The Kohonen map composed of 25 units was used 

(Figure 2). For five pairs of spectra, the damage types were determined by the additional inspection. 

24 pairs of spectra remained unclassified. The Kohonen maps work was simulated with the aid of 

the STATISTICA Neural Networks software package. 
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Figure 2. Kohonen map (55 units) for classification propagation. The total view and 

marked topological map at the last algorithm step are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OK, Center, Left, Right, L_C (Left+Center), R_C (Right+Center) states, which cor-

respond to identified damages, as well as the state Unknown for unknown damages, proved to be 

necessary for Markov network. To simplify results interpretation, network construction is carried 

out, firstly, for the six recognizable states, to which the Unknown state is then added. 
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Figure 3. Hierarchical tree plot obtained after tree clustering with the aid 

of Ward method with Euclidean distances. 
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Multivariate clusterization procedure yielded the hierarchical tree plot presented in Figure 3
9
. 

Taking into account the comments given in Section 2.1.3 reasonable initial clusters forming the 

model states were estimated with the aid of a tree cross-section at the 5-unit distance. After refining 

cluster contents via K-means clustering, assigning predominant labels to obtained sets and meshing 

clusters with identical labels, six higher-level clusters corresponding to the aforementioned damage 

types (OK, Center, Left, Right, L_C and R_C) were derived. Slight mismatches in distributions of 

cases over damage clusters are permissible if they do not cause qualitative distortions in a Markov 

network set of states and their reciprocal connections. 

Structure of connections between the recognizable states of Markov network was determined 

with the aid of Kohonen map consisting of 400 units (Figure 4).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The shortest distances between neurons of the marked areas are presented in Table 1.   

 

Table 1. The shortest distances between neurons of the marked areas of the  

topological map (M=2). 
 

 OK Center Right Left R_C L_C 

OK 0 2 2 2 9 2 

Center 2 0 3 4 2 2 

Right 2 3 0 3 2 5 

Left 2 4 3 0 3 2 

R_C 9 2 2 3 0 2 

L_C 2 2 5 2 2 0 

 

Pairs of states, for which the shortest distance was equal to 2, were supposed to be adjacent (k=0). 

To ascertain directions of transitions between the adjacent states, we took into consideration that the 

OK state was initial and transitions from this state to the other ones were nonreversible as well as 

                                                 
9
 Calculations were carried out with the aid of the STATISTICA software package. 

 

 

Figure 4. The marked topological map (2020 units) used to determine connections 

between Markov network states. Revealed connections are denoted by arrows. 
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the facts that the simple damages (Center, Right and Left) preceded more complex ones (R_C and 

L_C), in which they were included as components. The obtained Markov network with redundant 

connections is presented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking into account the contiguity of activated areas at the topological map, the network formally 

included connections between the states R_C and L_C at a given synthesis step in spite of the fact 

that none of them could be predecessor of another. Record of these connections did not influence 

the final result since they would be removed later as redundant.  

Alternative way of revealing state connections was based on the multidimensional scaling and 

yielded the 2-D diagram shown in Figure 6
10

. The arrows denote connections determined in accord-

ance with the rules specified in Section 2.1.4. The structure obtained agrees substantially with the 

results calculated by means of Kohonen maps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
10

 Calculations were carried out with the aid of STATISTICA software package. 
 

Figure 5. Markov network with redundant connections. 
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Figure 6. Redundant state connections resulted from multidimensional scaling. 
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Redundant connections were revealed by comparison of Pearson statistic values obtained by 

the chi-square minimum method for the complete network shown in Figure 5 and ten reduced net-

works. In each of these networks, one of i (i=0,1,…,9) parameters was supposed to be equal to ze-

ro at significance level 0.5. Estimates resulted from the first iteration of network adjustment are 

shown in Table 2.  

 

Table 2. Statistical estimates resulted from the first iteration of adjustment of Markov  

network with redundant connections. 
 

No Network 
Chi-

square 

Chi-square differ-

ence for the com-

plete and reduced 

networks 

p-value for the differ-

ence 

(for 1 d.o.f.) 

1 Complete (2 d.o.f.) 0.026 - - 

2 Reduced (0=0) 457.580 457.555 0.000 

3 Reduced (1=0) 0.026 0.000 1.000 

4 Reduced (2=0) 710.305 710.279 0.000 

5 Reduced (3=0) 718.422 718.396 0.000 

6 Reduced (4=0) 2.978 2.953 0.086 

7 Reduced (5=0) 0.052 0.026 0.871 

8 Reduced (6=0) 2.104 2.078 0.149 

9 Reduced (7=0) 0.097 0.072 0.789 

10 Reduced (8=0) 0.026 0.000 1.000 

11 Reduced (9=0) 0.062 0.037 0.848 

 

One can see from Table 2 that connections with flow rates 1, 5, 7, 8 and 9 are redundant 

and may be removed from the network (p>0.5); connections with flow rates 0, 2 and 3 are highly 

significant and must be retained (p<0.01); connections with flow rates 4, 6 are supposed to be 

questionable (0.01p0.5) and must be studied at the following iteration.   

The second iteration of adjustment showed that connections with flow rates 4 and 6 are 

highly significant and must be retained (see Table 3). Markov network obtained is presented in  

Figure 7.  

 

Table 3. Statistical estimates resulted from the second iteration of adjustment of the  

Markov network with redundant connections. 
 

N
o

 

Network Chi-square 

Chi-square difference for 

the complete and reduced 

networks 

p-value for the dif-

ference 

(for 1 d.o.f.) 

1 Complete 0.276 - - 

2 Reduced (4=0) 911.668 911.392 0.000 

3 Reduced (6=0) 1086.616 1086.340 0.000 
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The Unknown state was inserted in the network according to the above-mentioned tech-

nique, with the exception of adjacency study with the aid of Kohonen map. A network with redun-

dant connections contained all the possible ways of transition to the Unknown state (Figure 8). 

Removing redundant connections by two iterations of adjustment resulted in a final network pre-

sented in Figure 9 (only connection with flow rate 5 turned out to be significant). Kolmogorov set 

of differential equations describing time-domain dynamics of state probabilities pok, pleft, pcenter, 

pright, pl-c, pr-c and punknown, is 
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The following initial conditions are given for integration:  

 

pok(0)=1, pleft(0)= pcenter(0)= pright(0)= pl-c(0)= pr-c(0)=punknown(0)=0. 

 

Figure 7. Markov network adjusted. 

 

2 

6 

4 

3 

0 

OK 

Right 

Left 

Center 

L_C 

R_C 



Modelling and data analysis, 2012, No 1 

 

 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction (modification) of a network without adjacency study with the aid of Kohonen 

network is expedient if the number of free parameters to be found does not exceed the number of 

independent observed statistics Fk and Kohonen maps are definitely unable to determine the struc-

ture of connections (as is the case for the Unknown state).  

The synthesized network yields a good forecast: as the probability of exceeding the obtained 

value 3.396 of the chi-square statistic for six degrees of freedom ((7-1)2=12 independent statistics 

were used to find six free parameters) is 0.76, the chi-square goodness-of-fit test does not give 

grounds to consider the differences between observed and expected histograms (Figure 10) as statis-

tically significant.  

Figure 9. Markov network adjusted (with the Unknown state). 

Figure 8. Markov network with the Unknown state and redundant connections. 
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Probabilities of different system damages as functions of time are shown in Figure 11. The 

indicated curves make it possible to forecast the structure service life, establish the justified routine 

maintenance and facilitate diagnostics.  

Figure 10. Expected and observed percentage of different damage types 

appearance after 

(a) 1000 service hours, (b) 2000 service hours. 
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To get the simplest instrument for reproducing the dynamics of damage probabilities, Mar-

kov chain for engineering applications was generated from the network presented in Figure 7, by 

using the technique described in Section 2.3. 100-hour sampling intervals commensurable with 

1000-hour damage estimation intervals under consideration were used. Numerical solution of the 

relevant conditional multivariate optimization problem was computed by means of a special macro 

implemented at the MS Excel spreadsheet. Residual error resulted from calculations with the sought 

transition probability matrix was negligible
11

. Markov chain obtained is given in Figure 12. Shown 

in Figure 13 for illustration is comparison of the integrated Markov network probability functions 

and simulation results for the corresponding Markov chain after 100 iterations. This simulation was 

carried out with the aid of the LabVIEW graphical programming environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11

 Pearson statistic yielded X
2
<0.0001 and p>0.9999. 

Figure 11. Probabilities of different system damages as functions of time (time 

is given in hours). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

OK Left Center Right L_C R_C Unknown

Figure 12. Markov chain with transition probabilities generated from 

Markov network. 
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Figure 13. Comparison of the integrated Markov network probability functions (lower plot) 

and simulation results for the corresponding Markov chain (upper plot) after 100 iterations. 
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The identification problem was solved to get a sequence of different damages represented by 

model states, which is most likely occurred, for the sequence of three observed spectral characteris-

tics in structure checkpoints taken with a 100-hour sampling interval. Possible state sequences for 

the adjusted model shown in the form of Markov network in Figure 7 and in the form of Markov 

chain in Figure 12 are presented in the second column of Table 4. Table 5 contains parameters of 

probability density functions for Euclidean distances of observed characteristics arising in case of 

each state from the corresponding centroids as well as Euclidean distances of observed characteris-

tics from state centroids. To avoid influence of redundant information, the indicated distances were 

calculated for observed data representation with reduced dimension. According to the problem for-

mulation the system under study starts from the OK state. 

 

Table 4. Possible state sequences for the adjusted model and their probabilistic  

characteristics. 
 

State se-

quence 

number 

State sequence 

Occurrence prob-

ability for state se-

quence 

Probabilistic estimation 

of occurrence of ob-

served sequence of 

spectral characteristics 

1 {OK,OK,OK} 0.671 0.000000064 

2 {OK,OK,Left} 0.043 0.129708896 

3 {OK,OK,Center} 0.011 0.000283591 

4 {OK,OK,Right} 0.093 0.000571344 

5 {OK,Left,Left} 0.048 0.374853359 

6 {OK,Left,L_C} 0.005 0.031801329 

7 {OK,Center,Center} 0.013 0.000007695 

8 {OK,Center,R_C} 0.001 0.000000002 

9 {OK,Right,Right} 0.114 0.000004562 
 

 

Table 5. Parameters of normal probability density functions for Euclidean distances of  

observed characteristics arising in case of each state from the corresponding centroids and 

Euclidean distances of observed characteristics from state centroids. 
 
 

 OK Left Center Right L_C R_C 

Mean 1,126 0,594 0,432 0,484 0,669 0,549 

Standard deviation 0,049 0,253 0,303 0,224 0,252 0,193 

Euclidean distance of the 

1
st
 observed characteristic 

from state centroids 

1,108 1,777 1,842 1,967 1,897 1,993 

Euclidean distance of the 

2
nd

 observed characteristic 

from state centroids 

1,251 0,282 1,420 1,314 0,913 1,503 

Euclidean distance of the 

3
rd

 observed characteristic 

from state centroids 

1,427 0,463 1,363 1,288 0,878 1,448 

 

Comparison of values presented in the last column of Table 4 yields the following most likely oc-

curred sequence of damages: {OK,Left,Left}.  
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4. MAIN RESULTS AND CONCLUSIONS 
 

Methods of construction and analysis of hidden Markov models, which are in the best conformity 

with observations in case of uncertainties, have been developed. They are based on a novel statisti-

cal identification technique and can be applied to both continuous- and discrete-time models.  

The model synthesis may be carried out in case of some uncertainties: absence of complete 

information on system states and their connections is assumed. When solving this problem, a set of 

relevant states, their connections and optimal values of free parameters of Markov networks are de-

termined. An initial rough model results from either cluster analysis and multidimensional scaling 

of observed data or their analysis by means of Kohonen maps. Then it suffers proper corrections. 

Connections between different system states are determined according to contiguity of their clusters 

or areas of winning units on the topological maps and statistical goodness-of-fit tests. Undefined 

observed cases are partially identified by the method of classification propagation with the aid of 

either Kohonen maps or cluster analysis. Histograms of observed frequencies of being in different 

system states after the given exploitation periods are employed to train the constructed models. Free 

network parameters are identified by the method of chi-square minimum. In case of models repre-

sented by discrete-time structures conversion to continuous-time trained structures is performed to 

obtain more reliable results with the following return to discrete time and identification of transition 

probabilities.  

Owing to universality and flexibility, the presented way of solution has obvious advantages 

over the methods used for maximum likelihood estimation of parameters for traditional hidden 

Markov chains. Moreover, traditional algorithms used for hidden Markov models are unable to 

solve the applied technical problem considered here when uncertainties with damage types, model 

states and their connections are the case or the number of sampling points is too small. 

The methods suggested are available for specialists responsible for maintenance of technical 

products. However, these techniques are not fastened to the particular technical problem considered 

in this paper and can be applied to solve many other technical and non-technical tasks. The obtained 

Markov models are useful for diagnostics, pattern recognition, structure service lives forecasting 

and establishing the justified routine maintenance. 
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