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Presented are new approaches for supporting the outcome grading for activities of operators of complex
technical systems, which are based on comparisons of current exercises with the activity database patterns
in both the wavelet representation metric associated with time series of activity parameters and the likeli-
hood metric of eigenvalue trajectories for these parameters transforms as well as on probabilistic assessments
of skill class recognition using sample distribution functions of exercise distances to cluster centers in a
scaling space and Bayesian likelihood estimations with the aid of probabilistic profile of staying in activity
parameter ranges. These techniques have demonstrated the capabilities of recognizing sets of abnormal exer-
cises and detection of parameters characterizing operator mistakes to reveal the causes of abnormality. The
techniques in question overcome limitations of existing methods and provide advantages over manual data
analysis since they greatly reduce the combinatorial enumeration of the options considered.
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Introduction

An objective assessment of activity performance is essential for training process of opera-
tors of complex technical systems (OCTS). One of the critical aspects here is development of the
training evaluation criteria. The objective data based on trainee activity characteristics may be
an effective indicator for objective judging of the level of training effectiveness and skills obtained
after training. So, in demand are computer-aided diagnostics techniques that can be employed
for selection of OCTS candidates to estimate the level of building-up of knowledge, ability and
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skills. These techniques can raise objectivity, informational content and accuracy of estimations
together with standardization and automation of measurements. Of special importance are devel-
opment and analysis of new approaches which are used to estimate level of training and psycho-
physiological state of operators. The principal focus area in this regard is diagnostics as a result of
work on contemporary simulators where special conditions are available.

By now, a certain amount of results related to selection of abnormal exercise implementa-
tions has been accumulated [1—2, 7—15, 18, 29—31, 35, 37—38]. The vast majorities of them
consider aircraft trajectories only and do not take into account other exercise parameters. The
techniques obtained have the following limitations, which essentially restrict their practical ap-
plications, especially in case of analyzing flight data:

— Laborious manual preliminary data processing is always required,;

— No rigorous mathematical criteria for selecting abnormal exercises;

— No capabilities to reveal the causes of incorrect exercise implementations including flight
parameters clarifying them;

— Inefficient numerical optimization methods were selected,;

— Different time scales for flight parameters under study, which are not acceptable for cor-
rect data analysis, are in use;

— Unsuccessful choices for metrics to compare exercises;

— Very significant computing resources are in need for calculations that results from both
time series representation of the data to be processed and selection of time-consuming algorithms
for solving relevant optimization problems;

— The EM-algorithm involved in data processing is not usually applicable for the data of
high dimension;

— The regression models involved in data processing cannot be applied effectively for all
possible flight parameters of interest;

— Calculated “averaged” structures (“centroids”) which are in use for flight classification
cannot be generally considered as samples those might be implemented during a real flight;

— So called “negative scaling” that yields unrealistic interpretation for flight analysis is
frequently resulted from data processing;

— Unacceptably large samples of similar exercises are required for qualitative analysis;

— Clustering flight trajectories instead of flights themselves;

— No really successful attempts to reduce the amount of flight data to be processed that
results from their time series representation.

Certain application prospects are available for the approach implemented with the aid of
the self-organizing maps (SOM) [5, 10]. However its real capabilities are limited essentially by
non-determinism of SOM clustering and an inefficient way of aligning analyzed time series in the
time domain, with structural stability of the obtained solutions being questionable.

As aresult, there are only few examples of useful practical applications of these techniques
by now (usually landing trajectories are under study). It should be noted that one of the princi-
pal weaknesses of the techniques in question is applying traditional metrics for comparing flight
fragments since these metrics failed to solve the problem under study as well as related problems.

Since pilots are mentioned and because one of the most popular, but the least ef fective method
Jfor simple assessing the piloting quality is to check whether certain parameters are in the given criti-
cal value ranges for the specified flight modes, comments on this topic are unavoidable. Validity of
such a technique is best clarified by the following analogy: it looks like an attempt to assess the qual-
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ity of car driving via the number of collisions with a fence along the road, with all the other informa-
tion about the car movement being ignored. It is obvious that the effectiveness and relevance of such
evaluations do not hold water.

All the limitations presented above are overcome with the aid of the techniques [27—28]
based on wavelet representation of operator activity parameters and comparisons of eigenvalue
trajectories associated with observed exercises in the likelihood metric, which practical applica-
tion is under consideration in this paper. Presented below are the techniques for skill assessments
associated with relevant activity data obtained with the aid of both experiments and mathemati-
cal analysis of their results. As a result of its application, classes of skills should be determined
using activity parameters and operator actions revealed during exercises.

To evaluate the data under study an activity record database is required, in which patterns
of training data representing exercise implementations by different operator crews are collected.
A pattern in question is a representation of a certain activity fragment to be analyzed, which is
referred to as an exercise, via the set of parameters describing this exercise. These patterns are to
be related to one of the recognizable skill classes of trainees.

Collected training data should include exercise parameters as well as relevant expert as-
sessment/supervision comments from different sources including various types of training simu-
lators, virtual reality systems and real operator work. The expert comments in use should reveal
weak points of OCTS performance using information about typical mistakes in terms of activity
parameters and advices to a local operator instructor how to correct these weaknesses. Certain
attributes related to recognizable classes can be stored in the database both for cluster centers of
patterns belonging to the classes under consideration and for each exercise pattern to solve ap-
plication problems of interest.

The general assumption for the approaches under consideration is that the activities imple-
mented in different styles and quality as well as exercises of different types can be discriminated
in the multidimensional space formed with the aid of the wavelet coefficient metric or the likelihood
metric of eigenvalue trajectories for activity parameters transforms. This statement is proved by
computer experiments based on relevant empirical data. The general method that results from
this conclusion is the pattern selection.

The techniques presented provide essential advantages over manual data analysis since
they greatly reduce the combinatorial enumeration of the options considered.

The approaches in question can be used to support education activity and instructor assess-
ment processes. They should be also useful as tools for comparing different training means and
syllabus. They differ significantly from the probabilistic methods applied for system control, pre-
dictive diagnostics of technical failures, condition monitoring and operator activity support [16].

Basic approach: analysis of activity parameters represented via the discrete
wavelet transform of their time series

It is assumed that operator’s activity is represented by a set of time series describing the
dynamics of technical system parameters as well as, if possible, the operator’s state. Both prin-
cipal steps and connections of the analysis performed according to the proposed approach are
presented in Figure 1, comments to which are placed below.

Among the purposes of this analysis are:

— Support of the outcome grading for current activity by means of its comparing with the
activity patterns collected beforehand in the corresponding record database;
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— Recognition of abnormal activity and detection of the parameters characterizing opera-
tor mistakes to reveal the sources of abnormality.
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Fig. 1. Principal steps of ISFA analysis and their connections (expert actions are painted over)

As preliminary processing, selections of time intervals for exercise comparison and data
normalization are carried out. Selected are time series subsets corresponding to common time
intervals, which are suitable for comparison of the same type exercises to be analyzed. Prior to the
following computations, time series representing the history of performance of exercise comple-
tion are brought to a single scale, where the maximum is one and the minimum is zero.
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Where the data are broken down by certain exercises represented by several measured pa-
rameters, the redundant information contained in the given time series is eliminated using the
Principal Components Analysis |34, 39]. To do so, matrices of mutual correlations of time series
values are computed, the algebraic problem of eigenvalues is solved and it is figured out to what
extent it is possible to decrease the dimension of eigen subspace of the researched parameters so
that this would contain a sufficiently representative part of variability of the observed param-
eters. For each of the selected eigendirections of this subspace (principal components), for one of
the highest component loads a representative is elected from registered parameters (transition to
the basis of principal components is impractical due to uncertain substantial interpretation of prin-
cipal components and, in a number of applied tasks, due to no precise synchronization of researched
processes for different exercises in time). The purpose of this stage is to find out only relatively
independent characteristics replacing groups of significantly dependent representatives with
only one characteristic parameter to avoid distortions stipulating to combined effect of strongly
dependent characteristics in the subsequent phases.

Following to the basic approach, transition to integral characteristics for time intervals by
means of discrete wavelet transform is performed. Time series representing the training processes
under study are replaced with series of wavelet coefficients obtained as a result of the Multiresolution
Analysis [33]. In this case, the original processes as functions of time are replaced with the integral
characteristics of the time intervals, which are associated with these functions domain. In addition,
significant saving (for about an order of magnitude) in the number of coefficients necessary for a
correct representation of these process becomes available. Due to the rules for assigning wavelet coef-
[icients to time series fragments, which are in use in multiresolution analysis, problems associated with
the need to precisely synchronize processes relating to various same-type training exercises in time have
been cancelled since the most significant coefficients relating to relatively long time intervals are almost
insensitive to moderate time shifts. Length of the wavelet representations used during subsequent
analysis can be significantly (approximately an order of magnitude) smaller than the length of the
corresponding original time series, with no loss in the estimations accuracy.

For exercises under study, one needs either to compute the matrix of mutual distances be-
tween wavelet representations of source processes for different operator activities or to use the
alternative approach creating similar matrices in the likelihood metric of eigenvalue trajectories
associated with observed activity fragments (this way is presented in the subsequent Section).
Dimensions of such matrices are equal to the sample sizes of analyzed exercises. Such matrices
of mutual distances for all considered parameters are added to form the total matrix of mutual
distances between the exercises under study. Estimation of relative contributions of activity pa-
rameters in the elements of the mutual distances matrices is available for recognizing abnormal
exercises in the scaling spaces and detection of the parameters characterizing operator mistakes
to reveal the sources of abnormality.

Multidimensional Scaling [3, 36] to analyze the mutual allocation of operator exercises
within a space with acceptable dimensions is available after computing the matrix of mu-
tual distances. The computed allocation of exercises under study in the resulting space of the
Multidimensional Scaling is further used to define distances between the exercises to make diag-
nostic decisions. The dimensions of the scaling space are defined based on the condition of sufficient
differentiation of exercise samples relating to different recognizable classes. The aim of this step is
subsequent discrimination between the exercise types and normal /abnormal activity implemen-
tations in a scaling space.
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The Cluster Analysis of patters in the obtained scaling space is performed to reveal clusters
representing various types of exercises and operator skill classes. Obtained results provide possibil-
ity for creating certain classification rules to separate different scale levels of trial quality assess-
ment in a scaling space. Wherein cluster differences for an exercise type can be explained by the
exercise implementation resulted from individual skills. In particular, both Cluster Analysis and
Multidimensional Scaling steps are necessary to reasonably select clusters of abnormal exercises.

Probabilistic models represented by Markov random processes with discrete states and
continuous time [6, 18—25, 32] for each pattern cluster are created using the identification pro-
cedure to represent probabilistic dynamics for each operator skill class to forecast probabilistic
class behavior. This step is implemented in two ways: via distribution of probabilities of being in
model states and via dynamics of mathematical expectations for each independent parameter de-
termined with the aid of the Principal Components Analysis (correspondingly, these parameters
are considered approximately as independent ones).

Computations of distances to pattern cluster centers or to the nearest patterns are based
on results of performing a sequence of test exercises. If the pattern sample size is fairly large, dis-
tances are defined to centers of cluster patterns. These are computed based on multidimensional
scaling data obtained earlier. If pattern samples are small, the nearest pattern is defined, which
definition may be done in two ways: either immediately through the computing of the pattern
being nearest in the Euclidian metric of wavelet representation or through the identifying of the
pattern in the resulting space of multidimensional scaling, with such pattern being nearest in the
Euclidian metric.

Probabilistic assessments of operator skill class recognition using sample distribution
functions of distances to cluster centers are defined using sample distribution functions F(X) of
Euclidean distances X to cluster centers of patterns belonging to the relevant recognizable opera-
tor skill class i € {0, ..., z} in a multidimensional scaling space. Computed values of p, = 1 — F(7,),
where 7, is the Euclidean distance of i cluster in the space of multidimensional scaling, are in-
terpreted as probabilistic assessments of belonging to the given classes. Their distribution among
classes {p}7 characterizes the reliability of the obtained classification. In fact, the given approach
implements the idea of the Linear Discriminant Analysis in an generalized form. But unlike the lat-
ter there are no restrictions on observed data distributions.

After an operator completes a certain test exercise, in order to collect a meaningful data set
representing his activity accumulated by some time check point, the following results are to be
determined with the aid of the given database:

— The nearest pattern, following to which the relevant attributes are ascribed to the opera-
tor under assessment;

— Distances to cluster centers of patterns belonging to recognizable classes together with
the sample distribution functions of distances to centers of such clusters.

Probabilistic assessments of operator skill class attribution using Bayesian likelihood esti-
mations are calculated basing on identified probabilistic models.

Forecasting behavior of the selected parameters for the recognized operator skill class clus-
ter with the aid of the created probabilistic models is carried out by both distribution of probabili-
ties of being in model states and dynamics of mathematical expectations for each independent
parameter to estimate probability of hitting into dangerous situations associated with the certain
intervals of the parameters under consideration.

So, three ways of skill class assessments are available:
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— direct comparison of current exercises with the activity database patterns in the wavelet
representation metric associated with observed exercises, which is considered as a basic tech-
nique, as well as on

— probabilistic assessment of skill class recognition via the Generalized Discriminant
Analysis using sample distribution functions of exercise distances to cluster centers in a scaling
space, which is considered as a supportive technique, and

— Bayesian likelihood estimation (selecting a skill class with the aid of probabilistic profile
of staying in activity parameter ranges), which is also considered as a supportive technique.

Wherein, the actions, which an expert is responsible for, are:

— Assessment to select clusters of abnormal exercises;

— Analysis of parameter’s balance to select relevant parameters to be under study;

— Identification and interpretation of abnormalities and mistakes.

The approach in question can be applied even if the exercise sample sizes are small since
both the pattern selection and calculation of the parameter’s contributions to the mutual dis-
tances in pairwise exercises comparison are available in this case.

The Intelligent System for Flight Analysis (ISFA) implementing the developed techniques
with the aid of the LabVIEW graphical programming system provides the required calculations
[27—28]. ISFA has been officially registered at the Russian Patent Agency (“ROSPATENT”)
[26], with the following list of computational macro operations being available:

— Viewing characteristics of the activities represented by the exercises, including charac-
teristic parameters and relevant meaningful comments;

— Eliminating of redundant information by means of the Principal Components Analysis;

— Assessments of a skill class by selecting the closest activity pattern with the aid of the
matrix of mutual distances between wavelet representations of time series for collected activities
(1*t way of skill class assessment);

— Getting the matrix of successful transitions to select a next training activity;

— Clustering collected activities by the K-Means Algorithm;

— Assessments of a skill class using sample distribution functions of distances to cluster
centers in a scaling space (2" way of skill class assessment);

— Identifying probabilistic profile of a selected parameter for a selected cluster in terms of
the Markov process with time-dependent transition flow rates between the states. This process
implies solving the inverse problem for parameters of a set of ordinary differential equations. It
uses observed solution fragments for a certain number of time points, with transition flow rates it-
self being assumed to be functions of time. Detailed description of a numerical method developed
for the abovementioned identification is given in previously published works [22, 32];

— Assessments of a skill class using the Bayesian likelihood estimations. Visualization in
form of 3 dimensional surface plots should be used to select characteristic parameters which are
potentially responsible for abnormal activity implementation (3¢ way of skill class assessment).

Alternative approach: analysis of activity parameters via complex
eigenvalue trajectories of their time series transform
Let us consider a set of M time-dependent operator’s activity parameters which are repre-
sented by the set of time series:
5= (T 1)
where values of index i € {1, 2, ..., N} correspond to discrete time points.
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Let the r, dynamics be represented by the following matrix equation:
T =,

where F, is time-dependent matrix function of dimension M. Since this matrix function is
of interest for analyzing dynamics of the activity parameters under study, it should be identified,
with empirical data being the only source for such estimation.

Despite the fact that matrix F, depends on time in the general case, it can be approximated
by the corresponding stationary matrix during a sufficiently short period including K time points
and starting at point i, where K> M:

F =F allje{01. K- 1}.
it i

If this approximation does not fit empirical data, the time step used in forming the time
series in question can be reduced several times to obtain the desired fitness.

If one considers K equations

fio,ll fio,]M fTiO,l
I = F thicie ik where =1 &« =~ & =
! M1 f i MM fTiO,M

each row flTO »1e{l, .., M} of matrix F, can be identified as a pseudosolution of the corre-

sponding /-th matrix equation that is overdetermined in the general case:

Q’iofio,/ = qi0+1,[ )

where Q'io = : f o Qi1 ™~ (ri0+1,l  igea, 10+ Ve, -

Tigrk =11 7 Tigrk 1M

Each of the given / overdetermined equations can be solved by the direct method after mul-
tiplying its left and right parts by matrix QiTO, viz.:
Q«I'TO Qiofio,l = QzTO Qig+1,1°

This equation yields the solution that provides a minimal residual between left and right
parts of the initial overdetermined equation in the Euclidian metric and, accordingly, may be
considered as the optimal one. Thus, the entire identified matrix is obtained using redundant
information.

Identified matrix function F, is a normalized characteristic of the time series set to be
analyzed. Its eigenvalues, which are functions of discrete time, are principal content of the
transform defined by this matrix function for the whole set of parameters. Accordingly, their
dynamics is principal content of the total time series dynamics in compressed form. In general
case, these eigenvalues are complex ones, with eigenvectors being non-orthogonal. Purely com-
plex values (with nonzero imaginary part) form pairs of complex conjugate ones correspond-
ing to transformations in a certain two-dimensional invariant space. Initial problem dimension
can be reduced if dynamics of several first complex eigenvalues, which are greatest in absolute
value, is used for analysis.

Trajectories of the given eigenvalues on the complex plane can be used for pairwise com-
parisons of different exercises to recognize their types and features of implementation including
abnormality. In this case discrete-state discrete-time Markoov processes (Markov chains) are used

34



Kuravsky L.S., Yuryeo G.A., Zlatomrezheo V.I.
New approaches for assessing the activities of operators of complex technical systems.
Experimental Psychology (Russia), 2019, vol. 12, no. 4

to represent the dynamics of each eigenvalue, with the complex plane domain under consider-
ation being divided into cells by a finite grid of sufficient resolution and the j-th Markov chain
state being represented by j-th cell of this grid j € {1, ..., G}. Transitions between the given
states are determined by the transitions of the relevant eigenvalue under study between the
cells in question.

The s-th exercise under consideration, where s € {1, ..., S}, can be characterized by a sto-
chastic square matrix U = (u,;,) of transition probabilities between states of the Markov chain,
where u,; is the probability of transition from state j to state i (i, j € {1, ..., G}. Dynamics of the
probabilities of being in the Markov chain states as functions of discrete time is determined by
the following matrix equation:

z+1 N U p ’

where values of index i {1, 2, ..., N} correspond to discrete time points; p, = (p,, -, P, ;)"
represents the probabilities of being in the states at time point i. Each exercise has its own identified
matrix U_ with a unique set of the probabilities of transitions between the states. Identification of
each matrix U_is performed using sample estimates based on empirical data on the transition fre-
quencies from one state to another for each exercise under consideration.

The s-th exercise is represented by a sequence of passed states V. = {v, , v, , ..., v, }. The
likelihood of exercise s, in relation to exercise s; for the e-th eigen value trajectory can be repre-
sented by the conditional probablhty PV, | U .) that is calculated using the sequence of passed
states V, . ={0, . 0,, s, 0, } In case of matrlij of transition probabilities:

el Si e,2,si

N-1

P, U= Tl u s
N EVkr1s Vs )

Matrix Z = (z,;), wherez,, = -In P (V, | U, ) andi,j e {1, ..., S}, is considered as the exer-
cise pair distance matrlx for an exercise set under study and the e- th eigenvalue trajectory in the
likelihood metric of eigenvalue trajectories. The total exercise pair distance matrix Z is the sum of
corresponding particular matrices for each eigenvalue trajectory under consideration:

=37,

Matrix Z can be used instead of the matrix of mutual distances between wavelet representa-
tions of source processes for different operator exercises, which is presented in the previous Section,
to implement an alternative approach to comparing implementations of exercises in the likelihood
metric of eigenvalue trajectories. Calculating this matrix is followed by the multidimensional scal-
ing and cluster analysis as it is shown in the description of algorithmic aspects of the initial way
of operator activity analysis in the previous Section.

Since, despite the apparent simplicity, programming the given technique may cause dif-
ficulties, diagrams illustrating key details of software implementation are presented in Figures
2—4 with the aid of the G graphical programming language notation [4], which is one of the most
convenient means for compact representation of computational algorithms.

It is important to note that the approach under consideration is not so much sensitive to
reasonable time shifts in synchronizing training exercises due to dependence on the sequence of
passed Markov chain states V.
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Example of application

Since aircraft pilots are one of the most representative embodiments of OCTS, pilot works
during flight exercises can be employed as practical illustrations of the activities under consider-
ation. To illustrate the approaches in question, steps of analysis for two groups of 16 demonstra-
tion flight exercises, which are conventionally called “Upset Recovery” (UR) and “Wind Shear”
(WS), are presented hereinafter. It is important to note that durations of exercises from these
groups differ significantly.

The Principal Components Analysis revealed that five first principal components represent
almost completely 100% of 28 total observed parameters variance and, therefore, can be employed
for representation of all available characteristics for the further analysis (see Figure 5, where cu-
mulative percent of total variance is given for the set of five selected parameters).

Implementing the basic approach to analysis of activity parameters, the applied Daubechies
D4 wavelet transform for time series (Figure 6) turned out to be acceptable to get proper conclu-
sions. The computed allocations of the exercise implementations to be analyzed in the resulting
space, which are obtained as a result of the multidimensional scaling, were further in use to both
define distances between the trials to make relevant conclusions and represent the exercise imple-
mentations for analysis through coordinate sets.
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Fig. 5. The Principal Components Analysis: elimination of redundant information
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Implementing the alternative approach to analysis of activity parameters, complex eigen-
value trajectories representing their time series transform that was considered in the previous
Section were calculated (Figure 7).

Common matrices of mutual distances between the implementations of flight exercises in
color representation together with accompanying information are given in Figures 8—9, with a
separate diagram showing distances from the selected exercise to all the other ones. Both pre-
sented matrices of mutual distances show by sight substantial qualitative differences between the
UR and WS groups.

The Multidimensional Scaling, which was performed on the basis of the obtained ma-
trices of mutual distances, yielded the distribution of flight exercises in a scaling space to
be analyzed. Results of the subsequent Cluster Analysis are completely coinciding with UR
and WS group membership. The corresponding diagrams (Figures 10—11) show obviously
that exercises from UR and WS groups are easily separated in this space. The Discriminant
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Fig. 6. The basic approach to analysis of activity parameters: time series representing parameters
of flight exercises and their wavelet coefficients obtained as a result of the Multiresolution Analysis

Analysis yields highly significant discrimination between the groups under study for both
the basic (Wilks’ Lambda=0.0045, F (2,13)=1437.4, p<0.0001) and alternative approaches
(Wilks’ Lambda=0.114, F (2,13)=50.3, p<0.0001). As shown in these Figures, the Generalized
Discriminant Analysis makes it possible to calculate the estimates of probabilities of being in
each exercise group under consideration for any selected flight exercise. Thus, the techniques
in use provide strong discrimination between the given flight exercise types in the scaling
space.

To reveal the reasons of differences between the implementations of two exercises of in-
terest, relative contributions of the flight parameters, which are selected with aid the Principal
Components Analysis, in the corresponding elements of the matrices of mutual distances are es-
timated. Parameters providing the greatest contribution are considered as responsible ones. For
example, if Exercises 1 implemented without mistakes and Exercise 4 implemented abnormally
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Fig. 7. The alternative approach to analysis of activity parameters: complex eigenvalue trajectories
of their time series transform

are taken into consideration, their difference according to the bar chart in Figures 8 and 9 is de-
termined mainly by Parameters “Roll Euler Angle” (76%) and “Angle of Attack” (18%) (names
of these parameters are given in Figure 5). These exercises belong to type UR and, as shown in
Figure 10, are located at the greatest distance in the corresponding UR-cluster in the scaling
space. Direct comparison of key flight parameters presented in Figures 12 and 13 in their original
form results in the conclusion that differences between normal and abnormal implementations
are caused by reaching unacceptable roll Euler angles and, especially, dangerous angles of attack
(15%) in Exercise 4.

Thus, estimating relative contributions of flight parameters in the elements of the common
matrices of mutual distances has demonstrated the capabilities of both recognizing abnormal ex-
ercises in the scaling spaces and detection of flight parameters characterizing pilot mistakes to
reveal the sources of abnormality.
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It can be concluded that the applied techniques, which are based on the Multidimensional
Scaling for mutual distances between either wavelet transforms of relevant time series represent-
ing activity parameters or eigenvalue trajectories for flight parameters transforms in the likeli-
hood metric, proved to be effective tools for both distinguishing maneuvers of different types
and detecting abnormal flight fragments, with effectively determining activity parameters which
dynamics reveal pilot mistakes.
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Fig. 8. The basic approach to analysis of activity parameters: common matrix of mutual distances
between the exercise implementations in color representation with accompanying information

To reveal parameters that are responsible for differences between the calculated clusters,
the models describing probabilistic dynamics of each parameter in clusters under study were
identified employing the available empirical data and the techniques presented in [22—23, 27—
28, 32] (Figure 14). In particular, selecting clusters via Bayesian likelihood estimations (with the
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aid of probabilistic profile of staying in flight parameter ranges), with separate estimates for each
parameter being calculated, revealed that:

— Exercise 1 is assigned to the UR-cluster due to the prevailing influence of Parameter

“Roll Euler Angle” (Figure 15) and

— Exercise 4 is assigned to the UR-cluster due to the prevailing influence of Parameter

“Angle of Attack” (Figure 16).

In case of comparing clusters corresponding to normal and abnormal flight exercises, pa-
rameters responsible for abnormality and, consequently, the causes of pilot mistakes can be de-
termined in this way. So, the demonstrated capabilities for recognizing the causes of differences
between the clusters of exercise implementations in a scaling space are suitable for revealing the

sources of flight abnormality.
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Fig. 9. The alternative approach to analysis of activity parameters: common matrix of mutual distances
between the exercise implementations in color representation with accompanying information
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Principal results and conclusions

1. With the operator’s activity being represented by a set of time series describing dynamics of
technical system parameters as well as, if possible, the operator’s state, the presented basic and alter-
native approaches make it possible to support the outcome grading for current exercises by means
of their comparing with the exercise patterns collected beforehand in the activity record database.

2. Three ways of skill class assessments are available:

— comparisons of current exercises with the activity database patterns both in the wavelet
representation metric and in the likelihood metric of eigenvalue trajectories associated with ob-
served exercises (basic technique);

— probabilistic assessments of skill class recognition using sample distribution functions of
exercise distances to cluster centers in a scaling space (supportive technique);

— Bayesian likelihood estimations with the aid of probabilistic profile of staying in activity
parameter ranges (also supportive technique).

3. It is important that due to the rules for assigning wavelet coefficients to time series frag-
ments, which are in use in multiresolution analysis, problems associated with the need to precise-
ly synchronize processes relating to various same-type training exercises in time have been can-
celled since the most significant coefficients relating to relatively long time intervals are almost
insensitive to moderate time shifts. Similarly, the alternative approach is not so much sensitive to
moderate time shifts in synchronizing training exercises.

4. The Multidimensional Scaling for mutual distances between either wavelet transforms of
relevant time series representing activity parameters or eigenvalue trajectories for activity param-
eters transforms in the likelihood metric as well as the Cluster Analysis of exercise patters in an
obtained scaling space are in use to provide discrimination in a scaling space between the exercise
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types and normal /abnormal activity implementations. These techniques proved to be effective tools
for both distinguishing exercises of different types and detecting their abnormal fragments, with ef-
fectively determining activity parameters which dynamics reveal operator mistakes.

5. The techniques in use provide possibility for creating certain classification rules to separate
different scale levels of trial quality assessment in a scaling space. Wherein cluster differences for an
exercise type can be explained by the exercise implementation resulted from individual skills.

6. Partial comparisons to estimate parameter’s contributions to the mutual distances are
available in case of small exercise sample sizes. In case of greater sample sizes, plural comparisons
to get Bayesian likelihood estimations for operator skill clusters attribution, which contain pa-
rameter’s contributions, are available.

7. Estimating relative contributions of activity parameters in the elements of the matrices
of mutual distances has demonstrated the capabilities of both recognizing abnormal exercises in
the scaling spaces and detection of the parameters characterizing operator mistakes to reveal the
sources of abnormality.

8. The presented capability for recognizing the causes of differences between the clusters
of exercise implementations in a scaling space via Bayesian likelihood estimations (when a skill
class is selected with the aid of probabilistic profile of staying in activity parameter ranges) is also
suitable for revealing the sources of implementation abnormality.

9. The techniques presented provide tremendous advantages over manual data analysis
since they greatly reduce the combinatorial enumeration of the options considered.

10. The approaches in question should be useful as tools for comparing different training
means and syllabus.
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IIpesicraBiienbl HOBbIE MOAXO/bI, 0OECIIEYNBAIOIIIE OIlEHUBAHUE PE3YJIbTATOB PAbOTHI OMEPATOPOB CJIOK-
HBIX TEXHUYECKUX CHCTEM, B OCHOBE KOTOPBIX JIEKUT CpPaBHEHME YITPAKHEHUI, KOTOPbIE BLITIOTHSIOTCS B 3a-
JAHHBIA MOMEHT, C TTaTTepHaMi U3 0a3bl JAHHBIX KaK B BEHBIIET-METPUKE, CBSI3aHHOI € BDEMEHHBIMU PSIIAMI
[apaMeTPOB MOBEIECHUSI CUCTEMbI, TAK M B METPUKE TIPABAONOA00MST TPAEKTOPUI COOCTBEHHbIX 3HAYECHUIT TIpe-
06pa3oBaHN TAKKX TAPAMETPOB, & TAKIKE BEPOSTHOCTHAS OI[EHKA OTIPE/IENIEHNS KJIACCa HABBIKOB C MCIIOJIb30Ba-
HUeM (QYHKIMH BEIGOPOUHBIX PaCIPEACICHUIT PACCTOSHIIT YIIPaKHEHUIT 10 EHTPOB UCCIEYEMbIX KJIaCTePOB
B IIPOCTPAHCTBE IIKAIMPOBAHUS 1 HAileCOBCKUE OIIEHKHU TIPABIONOA00MS C MCIIOIb30BAHIEM BEPOSITHOCTHBIX
ripodusiei IPUHA/TIEKHOCTH OTIPEETIEHHBIM JNAITA30HaM TTaPAMeTPOB MOBE/ICHNS CUCTEMBL. ITH METO/IbI T1PO-
JIEMOHCTPUPOBAIH CIIOCOGHOCTH PACIIO3HABATD AHOMAJILHO BBITIOJTHECHHbIE YITPAKHEHUSI 1 OMPE/IETISAT Mapa-
METPbI, XapaKTePUIYIOIIIe OMUOKHU ONepaTopa, ¢ IEbi0 BbISBJIECHUS UX IPUUYKUH. PaccMaTpuBaeMble METOIbI
[IPEOI0JIEBAIOT OTPAaHUYEHNA, XapaKTePHLIE /IS CYIIECTBYIONIX METO/I0B, I UMEIOT IIPEUMYIIEeCTBa 110 CpaBHe-
HUIO C aHAJIN30M JIAHHBIX BPYYHYIO, TOCKOJIbKY 3HAUMTEILHO COKPAIIAIOT T1epebOp aHAIU3UPYEMbIX BADUAHTOB.

Kmoueevte cnosa: OIepaTopbl CJIOKHBIX TEXHUYECKUX CUCTEM, IMCKPETHOE Bele]IeT-HpeO6paSOBaHH€,
pacClio3HaBaHNE YPOBHA C(pOpMI/IpOBaHHOCTI/I HaBbIKOB, METO/I IJIaBHBIX KOMIIOHCHTOB, MHOTOMEPHOEC MIKa-
JINpOBaHue, K]IaCTeprII;'I aHaJIn3, III/ICK[)I/IMI/IH&HTHBIﬁ aHaJIN3, TPACKTOPUN COOCTBEHHBIX 3HAUECHMIA.
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